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1 Topological and metric spaces

1.1 Basic Definitions

Definition 1.1 (Topology). Let S be a set. A subset T of the set P(S) of
subsets of S is called a topology iff it has the following properties:

• ∅ ∈ T and S ∈ T .

• Let {Ui}i∈I be a family of elements in T . Then
⋃

i∈I Ui ∈ T .

• Let U, V ∈ T . Then U ∩ V ∈ T .

A set equipped with a topology is called a topological space. The elements of
T are called the open sets in S. A complement of an open set in S is called
a closed set.

Definition 1.2. Let S be a topological space and x ∈ S. Then a subset
U ⊆ S is called a neighborhood of x iff it contains an open set which in turn
contains x. We denote the set of neighborhoods of x by Nx.

Definition 1.3. Let S be a topological space and U a subset. The closure

U of U is the smallest closed set containing U . The interior
◦
U of U is the

largest open set contained in U . U is called dense in S iff U = S.

Definition 1.4 (base). Let T be a topology. A subset B of T is called a
base of T iff the elements of T are precisely the unions of elements of B. It
is called a subbase iff the elements of T are precisely the finite intersections
of unions of elements of B.

Proposition 1.5. Let S be a set and B a subset of P(S). B is the base of
a topology on S iff it satisfies all of the following properties:

• ∅ ∈ B.

• For every x ∈ S there is a set U ∈ B such that x ∈ U .

• Let U, V ∈ B. Then there exits a family {Wα}α∈A of elements of B
such that U ∩ V =

⋃
α∈AWα.

Proof. Exercise.

Definition 1.6. Let S be a topological space and p a point in S. We call a
family {Uα}α∈A of open neighborhoods of p a neighborhood base at p iff for
any neighborhood V of p there exists α ∈ A such that Uα ⊆ V .
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Definition 1.7 (Continuity). Let S, T be topological spaces. A map f : S →
T is called continuous at p ∈ S iff f−1(Nf(p)) ⊆ Np. f is called continuous
iff it is continuous at every p ∈ S. We denote the space of continuous maps
from S to T by C(S, T ).

Proposition 1.8. Let S, T be topological spaces and f : S → T a map.
Then, f is continuous iff for every open set U ∈ T the preimage f−1(U) in
S is open.

Proof. Exercise.

Proposition 1.9. Let S, T, U be topological spaces, f ∈ C(S, T ) and g ∈
C(T,U). Then, the composition g ◦ f : S → U is continuous.

Proof. Immediate.

Definition 1.10. Let S, T be topological spaces. A bijection f : S → T
is called a homeomorphism iff f and f−1 are both continuous. If such a
homeomorphism exists S and T are called homeomorphic.

Definition 1.11. Let T1, T2 be topologies on the set S. Then, T1 is called
finer than T2 and T2 is called coarser than T1 iff all open sets of T2 are also
open sets of T1.

Definition 1.12 (Induced Topology). Let S be a topological space and U
a subset. Consider the topology given on U by the intersection of each open
set on S with U . This is called the induced topology on U .

Definition 1.13 (Product Topology). Let S be the cartesian product S =∏
α∈I Sα of a family of topological spaces. Consider subsets of S of the form∏
α∈I Uα where finitely many Uα are open sets in Sα and the others coincide

with the whole space Uα = Sα. These subsets form the base of a topology
on S which is called the product topology.

Exercise 1. Show that alternatively, the product topology can be charac-
terized as the coarsest topology on S =

∏
α∈I Sα such that all projections

S � Sα are continuous.

Proposition 1.14. Let S, T,X be topological spaces and f ∈ C(S × T,X),
where S× T carries the product topology. Then the map fx : T → X defined
by fx(y) = f(x, y) is continuous for every x ∈ S.
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Proof. Fix x ∈ S. Let U be an open set in X. We want to show that
W := f−1

x (U) is open. We do this by finding for any y ∈ W an open
neighborhood of y contained in W . If W is empty we are done, hence assume
that this is not so. Pick y ∈ W . Then (x, y) ∈ f−1(U) with f−1(U) open
by continuity of f . Since S × T carries the product topology there must be
open sets Vx ⊆ S and Vy ⊆ T with x ∈ Vx, y ∈ Vy and Vx × Vy ⊆ f−1(U).
But clearly Vy ⊆ W and we are done.

Definition 1.15 (Quotient Topology). Let S be a topological space and ∼
an equivalence relation on S. Then, the quotient topology on S/∼ is the
finest topology such that the quotient map S � S/∼ is continuous.

1.2 Some properties of topological spaces

In a topological space it is useful if two distinct points can be distinguished
by the topology. A strong form of this distinguishability is the Hausdorff
property.

Definition 1.16 (Hausdorff). Let S be a topological space. Assume that
given any two distinct points x, y ∈ S we can find open sets U, V ⊂ S such
that x ∈ U and y ∈ V and U ∩V = ∅. Then, S is said to have the Hausdorff
property. We also say that S is a Hausdorff space.

Definition 1.17. Let S be a topological space. S is called first-countable
iff there exists a countable neighborhood base at each point of S. S is called
second-countable iff the topology of S admits a countable base.

Definition 1.18 (open cover). Let S be a topological space and U ⊆ S
a subset. A family of open sets {Uα}α∈A is called an open cover of U iff
U ⊆

⋃
α∈A Uα.

Proposition 1.19. Let S be a second-countable topological space and U ⊆ S
a subset. Then, every open cover of U contains a countable subcover.

Proof. Exercise.

Definition 1.20 (compact). Let S be a topological space and U ⊆ S a sub-
set. U is called compact iff every open cover of U contains a finite subcover.

Proposition 1.21. A closed subset of a compact space is compact. A com-
pact subset of a Hausdorff space is closed.

Proof. Exercise.
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Proposition 1.22. The image of a compact set under a continuous map is
compact.

Proof. Exercise.

Definition 1.23. Let S be a topological space. S is called locally compact
iff every point of S possesses a compact neighborhood.

Exercise 2 (One-point compactification). Let S be a locally compact Haus-
dorff space. Let S̃ := S ∪ {∞} to be the set S with an extra element ∞
adjoint. Define a subset U of S̃ to be open iff either U is an open subset of
S or U is the complement of a compact subset of S. Show that this makes
S̃ into a compact Hausdorff space.

1.3 Sequences and convergence

Definition 1.24 (Convergence of sequences). Let x := {xn}n∈N be a se-
quence of points in a topological space S. We say that x has an accumulation
point (or limit point) p iff for every neighborhood U of p we have xk ∈ U
for infinitely many k ∈ N. We say that x converges to a point p iff for any
neighborhood U of p there is a number n ∈ N such that for all k ≥ n :
xk ∈ U .

Proposition 1.25. Let S, T be topological spaces and f : S → T . If f
is continuous, then for any p ∈ S and sequence {xn}n∈N converging to p,
the sequence f{(xn)}n∈N in T converges to f(p). Conversely, if S is first
countable and for any p ∈ S and sequence {xn}n∈N converging to p, the
sequence f{(xn)}n∈N in T converges to f(p), then f is continuous.

Proof. Exercise.

Proposition 1.26. Let S be Hausdorff space and {xn}n∈N a sequence in S
which converges to a point p ∈ S. Then, {xn}n∈N does not converge to any
other point in S.

Proof. Exercise.

Definition 1.27. Let S be a topological space and U ⊆ S a subset. Consider
the set BU of sequences of elements of U . Then the set U

s consisting of the
points to which some element of BU converges is called the sequential closure
of U .
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Proposition 1.28. Let S be a topological space and U ⊆ S a subset. Let x
be a sequence of points in U which has an accumulation point p ∈ S. Then,
p ∈ U .

Proof. Suppose p /∈ U . Since U is closed S \ U is an open neighborhood of
p. But S \ U does not contain any point of x, so p cannot be accumulation
point of x. This is a contradiction.

Corollary 1.29. Let S be a topological space and U a subset. Then, U ⊆
U

s ⊆ U .

Proof. Immediate.

Proposition 1.30. Let S be a first-countable topological space and U a sub-
set. Then, U s

= U .

Proof. Exercise.

Definition 1.31. Let S be a topological space and U ⊆ S a subset. U is
said to be limit point compact iff every sequence in S has an accumulation
point (limit point) in U . U is called sequentially compact iff every sequence
of elements of U contains a subsequence converging to a point in U .

Proposition 1.32. Let S be a first-countable topological space and x =
{xn}n∈N a sequence in S with accumulation point p. Then, x has a subse-
quence that converges to p.

Proof. By first-countability choose a countable neighborhood base {Un}n∈N
at p. Now consider the family {Wn}n∈N of open neighborhoods Wn :=⋂n

k=1 Uk at p. It is easy to see that this is again a countable neighborhood
base at p. Moreover, it has the property that Wn ⊆ Wm if n ≥ m. Now,
Choose n1 ∈ N such that xn1 ∈ W1. Recursively, choose nk+1 > nk such
that xnk+1

∈ Wk+1. This is possible since Wk+1 contains infinitely many
points of x. Let V be a neighborhood of p. There exists some k ∈ N such
that Uk ⊆ V . By construction, then Wm ⊆ Wk ⊆ Uk for all m ≥ k and
hence xnm ∈ V for all m ≥ k. Thus, the subsequence {xnm}m∈N converges
to p.

Proposition 1.33. Sequential compactness implies limit point compactness.
In a first-countable space the converse is also true.

Proof. Exercise.

Proposition 1.34. A compact set is limit point compact.
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Proof. Consider a sequence x in a compact set S. Suppose x does not have
an accumulation point. Then, for each point p ∈ S we can choose an open
neighborhood Up which contains only finitely many points of x. However, by
compactness, S is covered by finitely many of the sets Up. But their union
can only contain a finite number of points of x, a contradiction.

1.4 Metric and pseudometric spaces

Definition 1.35. Let S be a set and d : S × S → R+
0 a map with the

following properties:

• d(x, y) = d(y, x) ∀x, y ∈ S. (symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ S. (triangle inequality)

• d(x, x) = 0 ∀x ∈ S.

Then d is called a pseudometric on S. S is also called a pseudometric space.
Suppose d also satisfies

• d(x, y) = 0 =⇒ x = y ∀x, y ∈ S. (definiteness)

Then d is called a metric on S and S is called a metric space.

Definition 1.36. Let S be a pseudometric space, x ∈ S and r > 0. Then
the set Br(x) := {y ∈ S : d(x, y) < r} is called the open ball of radius r
centered around x in S. The set Br(x) := {y ∈ S : d(x, y) ≤ r} is called the
closed ball of radius r centered around x in S.

Proposition 1.37. Let S be a pseudometric space. Then, the open balls
in S together with the empty set form the basis of a topology on S. This
topology is first-countable and such that closed balls are closed. Moreover,
the topology is Hausdorff iff S is metric.

Proof. Exercise.

Definition 1.38. A topological space is called (pseudo)metrizable iff there
exists a (pseudo)metric such that the open balls given by the (pseudo)metric
are a basis of its topology.

Proposition 1.39. In a pseudometric space any open ball can be obtained as
the countable union of closed balls. Similarly, any closed ball can be obtained
as the countable intersection of open balls.

Proof. Exercise.
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Proposition 1.40. Let S be a set equipped with two pseudometrics d1 and
d2. Then, the topology generated by d2 is finer than the topology generated by
d1 iff for all x ∈ S and r1 > 0 there exists r2 > 0 such that B2

r2(x) ⊆ B1
r1(x).

In particular, d1 and d2 generate the same topology iff the condition holds
both ways.

Proof. Exercise.

Proposition 1.41 (epsilon-delta criterion). Let S, T be pseudometric spaces
and f : S → T a map. Then, f is continuous at x ∈ S iff for every ε > 0
there exists δ > 0 such that f(Bδ(x)) ⊆ Bε(f(x)).

Proof. Exercise.

1.5 Elementary properties of pseudometric spaces

Proposition 1.42. Let S be a pseudometric space and x := {xn}n∈N a
sequence in S. Then x converges to p ∈ S iff for any ε > 0 there exists an
n0 ∈ N such that d(xn, p) < ε for all n ≥ n0.

Proof. Immediate.

Definition 1.43. Let S be a pseudometric space and x := {xn}n∈N a se-
quence in S. Then x is called a Cauchy sequence iff for all ε > 0 there exists
an n0 ∈ N such that d(xn, xm) < ε for all n,m ≥ n0.

Exercise 3. Give an example of a set S, a sequence x in S and two metrics
d1 and d2 on S that generate the same topology, but such that x is Cauchy
with respect to d1, but not with respect to d2.

Proposition 1.44. Any converging sequence in a pseudometric space is a
Cauchy sequence.

Proof. Exercise.

Proposition 1.45. Suppose x is a Cauchy sequence in a pseudometric space.
If p is accumulation point of x then x converges to p.

Proof. Exercise.

Definition 1.46. Let S be a pseudometric space and U ⊆ S a subset. If
every Cauchy sequence in U converges to a point in U , then U is called
complete.
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Proposition 1.47. A complete subset of a metric space is closed. A closed
subset of a complete pseudometric space is complete.

Proof. Exercise.

Exercise 4. Give an example of a complete subset of a pseudometric space
that is not closed.

Definition 1.48 (Totally boundedness). Let S be a pseudometric space. A
subset U ⊆ S is called totally bounded iff for any r > 0 the set U admits a
cover by finitely many open balls of radius r.

Proposition 1.49. A subset of a pseudometric space is compact iff it is
complete and totally bounded.

Proof. We first show that compactness implies totally boundedness and com-
pleteness. Let U be a compact subset. Then, for r > 0 cover U by open balls
of radius r centered at every point of U . Since U is compact, finitely many
balls will cover it. Hence, U is totally bounded. Now, consider a Cauchy
sequence x in U . Since U is compact x must have an accumulation point
p ∈ U (Proposition 1.34) and hence (Proposition 1.45) converge to p. Thus,
U is complete.

We proceed to show that completeness together with totally bounded-
ness imply compactness. Let U be a complete and totally bounded subset.
Assume U is not compact and choose a covering {Uα}α∈A of U that does
not admit a finite subcover. On the other hand, U is totally bounded and
admits a covering by finitely many open balls of radius 1/2. Hence, there
must be at least one such ball B1 such that C1 := B1 ∩ U is not covered
by finitely many Uα. Choose a point x1 in C1. Observe that C1 itself is
totally bounded. Inductively, cover Cn by finitely many open balls of radius
2−(n+1). For at least one of those, call it Bn+1, Cn+1 := Bn+1 ∩ Cn is not
covered by finitely many Uα. Choose a point xn+1 in Cn+1. This process
yields a Cauchy sequence x := {xk}k∈N. Since U is complete the sequence
converges to a point p ∈ U . There must be α ∈ A such that p ∈ Uα. Since
Uα is open there exists r > 0 such that B(p, r) ⊆ Uα. This implies, Cn ⊆ Uα

for all n ∈ N such that 2−n+1 < r. However, this is a contradiction to the
Cn not being finitely covered. Hence, U must be compact.

Proposition 1.50. The notions of compactness, limit point compactness
and sequential compactness are equivalent in a pseudometric space.

Proof. Exercise.
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Proposition 1.51. A totally bounded pseudometric space is second-countable.

Proof. Exercise.

Proposition 1.52. Let S be equipped with a pseudometric d. Then p ∼
q ⇐⇒ d(p, q) = 0 for p, q ∈ S defines an equivalence relation on S. The
prescription d̃([p], [q]) := d(p, q) for p, q ∈ S is well defined and yields a
metric d̃ on the quotient space S/∼. The topology induced by this metric on
S/∼ is the quotient topology with respect to that induced by d on S. Moreover,
S/∼ is complete iff S is complete.

Proof. Exercise.

1.6 Completion of metric spaces

Often it is desirable to work with a complete metric space when one is only
given a non-complete metric space. To this end one can construct the com-
pletion of a metric space. This is detailed in the following exercise.

Exercise 5. Let S be a metric space.

• Let x := {xn}n∈N and y := {yn}n∈N be Cauchy sequences in S. Show
that the limit limn→∞ d(xn, yn) exists.

• Let T be the set of Cauchy sequences in S. Define the function d̃ :
T × T → R+

0 by d̃(x, y) := limn→∞ d(xn, yn). Show that d̃ defines a
pseudometric on T .

• Show that T is complete.

• Define S as the metric quotient T/∼ as in Proposition 1.52. Then, S
is complete.

• Show that there is a natural isometric embedding (i.e., a map that
preserves the metric) iS : S → S. Furthermore, show that this is a
bijection iff S is complete.

Definition 1.53. The metric space S constructed above is called the com-
pletion of the metric space S.

Proposition 1.54 (Universal property of completion). Let S be a metric
space, T a complete metric space and f : S → T an isometric map. Then,
there is a unique isometric map f : S → T such that f = f ◦iS. Furthermore,
the closure of f(S) in T is equal to f(S).

Proof. Exercise.
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1.7 Norms and seminorms

In the following K will denote a field which can be either R or C.

Definition 1.55. Let V be a vector space over K. Then a map V → R+
0 :

x 7→ ‖x‖ is called a seminorm iff it satisfies the following properties:

1. ‖λx‖ = |λ|‖x‖ for all λ ∈ K, x ∈ V .

2. For all x, y ∈ V : ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (triangle inequality)

A seminorm is called a norm iff it satisfies in addition the following property:

3. ‖x‖ = 0 =⇒ x = 0.

Proposition 1.56. Let V be a seminormed vector space over K. Then,
d(v, w) := ‖v−w‖ defines a pseudometric on V . Moreover, d is a metric iff
the seminorm is a norm.

Proof. Exercise.

Remark 1.57. Since a seminormed space is a pseudometric space all the
concepts developed for pseudometric spaces apply. In particular the notions
of convergence, Cauchy sequence and completeness apply to seminormed
spaces.

Exercise 6. Show that the operations of addition and multiplication are
continuous in a seminormed space.

Definition 1.58. A complete normed vector space is called a Banach space.

Exercise 7. Show that Rn with norm given by ‖x‖ =
√

x21 + · · ·+ x2n is a
Banach space. Show that ‖x‖ = |x1| + · · · + |xn| is another norm that also
makes Rn into a Banach space.

Exercise 8. Let S be a set and Fb(S,K) the set of bounded maps S → K.

1. Fb(S,K) is a vector space over K.

2. The supremum norm on it is a norm defined by

‖f‖sup := sup
p∈S

|f(p)|.

3. Fb(S,K) with the supremum norm is a Banach space.
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Exercise 9. Let n ∈ N and S be a set with n elements. Show that Fb(S,R)
is isomorphic to Rn as a vector space and that the supremum norm yields in
this way yet another norm on Rn, different from the ones of Exercise 7, that
also make it into a Banach space.

Exercise 10. Let S be a topological space and Cb(S,K) the set of bounded
continuous maps S → K.

1. Cb(S,K) is a vector space over K.

2. Cb(S,K) with the supremum norm is a Banach space.

Proposition 1.59. Let V be a vector space with a seminorm ‖·‖V . Consider
the subset A := {v ∈ V : ‖v‖V = 0}. Then, A is a vector subspace. Moreover
v ∼ w ⇐⇒ v − w ∈ A defines an equivalence relation and W := V/ ∼ is a
vector space. The seminorm ‖·‖V induces a norm on W via ‖[v]‖W := ‖v‖V
for v ∈ V . Also, V is complete with respect to the seminorm ‖ · ‖V iff W is
complete with respect to the norm ‖ · ‖W .

Proof. Exercise.

Proposition 1.60. Let V,W be seminormed vector spaces. Then, a linear
map α : V → W is continuous iff there exists a constant c ≥ 0 such that

‖α(v)‖W ≤ c‖v‖V ∀v ∈ V.

Proof. Exercise.
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2 Measures

The basic idea behind integration theory via measures may be roughly de-
scribed as follows: Given a space (set) we want to associate "sizes" to
"pieces" of the space. To do this we first have to make precise what we
mean by a "piece", i.e., what subsets we admit as "pieces". This is the
purpose of the concept of a σ-algebra and a measurable space. Given that
we know what a piece is, we want to assign a number to it, its "size", in
such a way that sizes add up appropriately when we join pieces. This is pro-
vided by the concept of a measure. Then, we can declare the integral for the
characteristic function on a piece to be the size of the piece. Approximating
more arbitrary functions by linear combinations of characteristic functions
for pieces then yields a general notion of integral.

2.1 σ-Algebras and Measurable Spaces

Definition 2.1 (Boolean Algebra). Let A be a set equipped with three
operations: ∧ : A×A → A, ∨ : A×A → A and ¬ : A → A and two special
elements 0, 1 ∈ A. Suppose these satisfy the following properties:

• (x ∧ y) ∧ z = x ∧ (y ∧ z) and (x ∨ y) ∨ z = x ∨ (y ∨ z) ∀x, y, z ∈ A.
(associativity)

• x ∧ y = y ∧ x and x ∨ y = y ∨ x ∀x, y ∈ A. (commutativity)

• x∧(y∨z) = (x∧y)∨(x∧z) and x∨(y∧z) = (x∨y)∧(x∨z) ∀x, y, z ∈ A.
(distributivity)

• x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x ∀x, y ∈ A. (absorption)

• x ∧ ¬x = 0 and x ∨ ¬x = 1 ∀x ∈ A. (complement)

Then, A is called a Boolean algebra.

Proposition 2.2. Let A be a Boolean algebra. Then, the following properties
hold:

x ∧ x = x, x ∨ x = x, x ∧ 0 = 0, x ∧ 1 = x, x ∨ 0 = x, x ∨ 1 = 1 ∀x ∈ A.

Proof. Exercise.

Exercise 11. Show that the set with two elements 0, 1 forms a Boolean
algebra. This is important in logic, where 0 stands for "false" and 1 for
"true".
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Exercise 12. Let S be a set. Show that the set P(S) of subsets of S forms
a Boolean algebra, where ∨ = ∪ is the union, ∧ = ∩ is the intersection and
¬ is the complement of sets.

Definition 2.3 (Algebra of sets). Let S be a set. A subset M of the set
P(S) of subsets of S is called an algebra of sets iff it is a Boolean subalgebra
of P(S).

Proposition 2.4. Let S be a set and M a subset of the set P(S) of subsets
of S. Then M is an algebra of sets iff it contains the empty set and is closed
under complements, finite unions, and finite intersections.

Proof. Immediate.

Exercise 13. Show that the above proposition remains true if we erase
either the requirement for closedness under finite unions or the requirement
for closedness under finite intersections.

Definition 2.5. Let S be a set and M an algebra of subsets of S. We call
M a σ-algebra of sets iff it is closed under countable unions and countable
intersections.

Exercise 14. Show that the above definition remains unchanged if we re-
move either the requirement for closedness under countable unions or closed-
ness under countable intersections.

Definition 2.6. Let S be a set and B a subset of the set P(S) of subsets of
S. Then, the smallest σ-algebra M on S containing B is called the σ-algebra
generated by B.

Exercise 15. Justify the above definition by showing that the smallest σ-
algebra in the sense of the definition always exists.

Definition 2.7. Let S be a set and B a subset of P(S). Then, B is called
monotone iff it satisfies the following properties:

• Let {An}n∈N be a sequence of elements of B such that An ⊆ An+1.
Then,

⋃
n∈NAn ∈ B.

• Let {An}n∈N be a sequence of elements of B such that An ⊇ An+1.
Then,

⋂
n∈NAn ∈ B.

Proposition 2.8. 1. A σ-algebra is monotone. 2. An algebra that is mono-
tone is a σ-algebra.
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Proof. Exercise.

Proposition 2.9 (Monotone Class Theorem). Let S be a set and N an
algebra of subsets of S. Then, the smallest set M of subsets of S which
contains N and is monotone is the σ-algebra generated by N .

Proof. For each A ∈ M and consider

MA := {B ∈ M : A ∩B ∈ M, A ∩ ¬B ∈ M,¬A ∩B ∈ M}.

It is easy to see that MA is monotone. [Exercise.Show this!] Furthermore,
if A ∈ N , then N ⊆ MA since N is an algebra. So in this case M ⊆ MA

by minimality of M and consequently M = MA. Thus, for B ∈ M we have
B ∈ MA and hence A ∈ MB if A ∈ N . So, N ⊆ MB and by minimality we
conclude M = MB for any B ∈ M. But this means that M is an algebra.
Thus, by Proposition 2.8.2, M is a σ-algebra. Furthermore, by minimality
and Proposition 2.8.1, it is the σ-algebra generated by N .

Definition 2.10. Let S be a set and M a σ-algebra of subsets of S. Then,
we call the pair (S,M) a measurable space and the elements of M measurable
sets.

Definition 2.11. Let S be a measurable space and U a subset of S. Then,
the σ-algebra on S intersected with U is called the induced σ-algebra on U .

Definition 2.12. Let S be a topological space. Then, the σ-algebra gener-
ated by the topology of S is called the algebra of Borel sets. Its elements
are called Borel measurable.

2.2 Measurable Functions

As we see the concept of a measurable space is very similar to the concept of
a topological space. Both are based on a set of subsets closed under certain
operations. We can push this analogy further and consider the analog of a
continuous function: a measurable function.

Definition 2.13. Let S, T be measurable spaces. Then a map f : S →
T is called measurable iff the preimage of every measurable set of T is a
measurable set of S. If either T or S or T and S are topological spaces
instead we call f measurable iff it is measurable with respect to the generated
σ-algebra(s) of Borel sets.

Proposition 2.14. Let S, T, U be measurable spaces, f : S → T and g :
T → U measurable. Then, g ◦ f : S → U is measurable.
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Proof. Immediate.

Proposition 2.15. Let S be a measurable space, T a topological space and
f : S → T . Then, f is measurable iff the preimage of every open set is
measurable. Also, f is measurable iff the preimage of every closed set is
measurable.

Proof. Exercise.

Corollary 2.16. Let S and T be topological spaces and f : S → T a contin-
uous map. Then, f is measurable.

Proposition 2.17. Let S be a measurable space, T and U topological spaces,
f : S → T × U . Denote by fT : S → T and fU : S → U the component
functions. If the product f : S → T × U is measurable, then both fT and fU
are measurable. Conversely, if T and U are second-countable and fT and fU
are measurable, then f is measurable.

Proof. First suppose that f is measurable. Then, fT = pT ◦ f , where pT
is the projection T × U → T . Since pT is continuous, it is measurable by
Corollary 2.16 and the composition fT is measurable by Proposition 2.14.
In the same way it follows that fU is measurable.

Conversely, suppose now that fT and fU are measurable. If V ⊆ T and
W ⊆ U are open sets, then f−1

T (V ) and f−1
U (W ) are measurable in S and

so is their intersection f−1(V × W ) = f−1
T (V ) ∩ f−1

U (W ). Since T and U
are second-countable, every open set in T ×U can be written as a countable
union of products of open sets in T and U [Exercise.Show this!]. But the
preimage of such a countable union in S under f−1 can be written as a
countable union of preimages. Since these are measurable, their countable
union is also measurable. It follows then from Proposition 2.15 that f is
measurable.

In the following K denotes either the field of real numbers R or the field
of complex numbers C.

Proposition 2.18. Let S be a measurable space, f, g : S → K measurable
and λ ∈ K. Then:

• |f | : x 7→ |f(x)| is measurable.

• f + g : x 7→ f(x) + g(x) is measurable.

• λf : x 7→ λf(x) is measurable.
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• fg : x 7→ f(x)g(x) is measurable.

Proof. Exercise.

This shows in particular that measurable functions with values in R or C
form an algebra. Another important property of the set of measurable maps
is its closedness under pointwise limits. This can be formulated for the more
general case when the values are taken in a metric space.

Theorem 2.19 (adapted from S. Lang). Let S be a measurable space and
T a metric space. Suppose {fn}n∈N is a sequence of measurable functions
fn : S → T which converges pointwise to the function f : S → T . Then, f
is measurable.

Proof. Let U be an open set in T . Suppose x ∈ f−1(U). Since {fn(x)}n∈N
converges to f(x) there exists m ∈ N such that x ∈ f−1

n (U) for all n > m. In
particular, x ∈

⋃∞
n=k f

−1
n (U) for any k ∈ N and so also x ∈

⋂∞
k=1

⋃∞
n=k f

−1
n (U).

Since this is true for any x ∈ f−1(U) we get

f−1(U) ⊆
∞⋂
k=1

∞⋃
n=k

f−1
n (U).

Consider now for all l ∈ N the open sets

Ul := {x ∈ U : d(x, y) > 1/l ∀y /∈ U}.

Then, U =
⋃∞

l=1 Ul and applying the above reasoning to each Ul we get,

f−1(U) ⊆
∞⋃
l=1

∞⋂
k=1

∞⋃
n=k

f−1
n (Ul).

Suppose now that x /∈ f−1(U) and fix l ∈ N. Since B1/l(f(x)) ∩ Ul = ∅
there exists m ∈ N such that x /∈ f−1

n (Ul) for all n > m. In partic-
ular, x /∈

⋂∞
k=1

⋃∞
n=k f

−1
n (Ul). Since this is true for any l ∈ N we get

x /∈
⋃∞

l=1

⋂∞
k=1

⋃∞
n=k f

−1
n (Ul). Since this is true for any x /∈ f−1(U) we

get, combining with the above result,

f−1(U) =
∞⋃
l=1

∞⋂
k=1

∞⋃
n=k

f−1
n (Ul).

Since fn is measurable for all n ∈ N the right hand side is measurable. We
have thus shown that preimages of open sets are measurable. By Proposi-
tion 2.15 this is sufficient for f to be measurable.



20 Robert Oeckl – RA NOTES – 15/11/2012

Definition 2.20. Let S be a measurable space. A map f : S → K is called
a simple map iff it is measurable and takes only finitely many values.

Proposition 2.21. Let S be a measurable space and f : S → K a map that
takes only finitely many values. Then f is a simple map (i.e., is measurable)
iff the preimage of each of the values of f is measurable.

Proof. Exercise.

Proposition 2.22. The simple functions with values in K form a subalgebra
of the algebra of measurable functions with values in K.

Proof. Exercise.

Theorem 2.23 (adapted from S. Lang). Let S be a measurable space and
f : S → K measurable. Then, f is the pointwise limit of a sequence of simple
maps. If, moreover, f takes values in R+

0 , then the sequence can be chosen
to increase monotonically.

Proof. Consider first the case K = R. Fix n ∈ N. For each k ∈ {1, . . . , 2n+1n}
define the interval Ik := [−n+ k−1

2n ,−n+ k
2n ). Also, define I0 := (−∞,−n)

and I2n+1n+1 := [n,∞). Notice that R is the disjoint union of the measur-
able intervals Ik for k ∈ {0, . . . , 2n+1n + 1}. Now set Xk := f−1(Ik) for
all k ∈ {0, . . . , 2n+1n + 1}. Since the intervals Ik are measurable so are the
sets Xk. Define the function fn : X → R by fn(Xk) := −n + k−1

2n for all
k ∈ {1, . . . , 2n+1n+1} and fn(X0) := −n. It is easy to see that {fn}n∈N is a
sequence of simple functions that converge pointwise to f . [Exercise.Show
this!] Moreover, if f takes values in R+

0 only, the sequence is monotonically
increasing. [Exercise.Show this!] To treat the case K = C we decompose f
into its real and imaginary part. The sum of simple sequences for each part
is again a simple sequence.

2.3 Positive Measures

Definition 2.24. Let {an}n∈N be a monotonously increasing sequence of
real numbers. Then we say that limn→∞ an = ∞ iff for any a ∈ R there
exists m ∈ N such that an > a for all n > m.

Definition 2.25 (Positive Measure). Let S be a set with an algebra M of
subsets. Then, a map µ : M → [0,∞] is called a (positive) measure iff it is
countably additive, i.e., satisfies the following properties:

• µ(∅) = 0.
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• Let {Un}n∈N be a sequence of elements of M such that Un ∩ Um = ∅
if n 6= m and such that

⋃
n∈N Un ∈ M. Then,

µ

(⋃
n∈N

Un

)
=
∑
n∈N

µ (Un) .

If U ∈ M, then µ(U) is called its measure. Moreover, a measurable space S
with σ-algebra M and positive measure µ : M → [0,∞] is called a measure
space.

We shall mostly be interested in the case where M actually is a σ-algebra.
However, it will turn out convenient to keep the definition more general when
we consider constructing measures.

Proposition 2.26. Let S be a set, M an algebra of subsets of S and µ :
M → [0,∞] a measure. Then, the following properties hold:

• Let A,B ∈ M and A ⊆ B. Then, µ(A) ≤ µ(B).

• Let {An}n∈N be a sequence of elements of M such that
⋃

n∈NAn ∈ M.
Then,

µ

(⋃
n∈N

An

)
≤
∑
n∈N

µ(An).

• Let {An}n∈N be a sequence of elements of M such that An ⊆ An+1 for
all n ∈ N and

⋃
n∈NAn ∈ M. Then,

µ

(⋃
n∈N

An

)
= lim

n→∞
µ(An).

• Let {An}n∈N be a sequence of elements of M such that An ⊇ An+1 for
all n ∈ N and

⋂
n∈NAn ∈ M. If furthermore, µ(An) < ∞ for some

n ∈ N then,

µ

(⋂
n∈N

An

)
= lim

n→∞
µ(An).

Proof. Exercise.

Exercise 16. Check whether the following examples are measures.
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• Let S be a set and consider the σ-algebra of all subsets of S. If A ⊆ S
is finite define µ(A) to be its number of elements. If A ⊆ S is infinite
define µ(A) = ∞. µ is called the counting measure.

• Let S be a set and consider the σ-algebra of all subsets of S. If A ⊆ S
is finite define µ(A) = 0. If A ⊆ S is infinite define µ(A) = ∞.

• Let S be a set and consider the σ-algebra of all subsets of S. If A ⊆ S is
countable define µ(A) = 0. If A ⊆ S is not countable define µ(A) = ∞.

• Let S be a set and consider the σ-algebra of all subsets of S. Let x ∈ S.
For A ⊆ S define µ(A) = 1 if x ∈ A and µ(A) = 0 otherwise. µ is
called the Dirac measure with respect to x.

Definition 2.27. Let S be a measure space and A ⊆ S a measurable subset.
We say that A is σ-finite iff it is equal to some countable union of measurable
sets with finite measure. We say that a measure is finite respectively σ-
finite iff the measure space is finite respectively σ-finite with respect to the
measure.

Exercise 17. Which of the examples of measures above are σ-finite?

Definition 2.28. Let (S,M, µ) be a measure space. If every subset of any
set of measure 0 is measurable, then we call (S,M, µ) complete.

Proposition 2.29. Let (S,M, µ) be a measure space. Then, there exists a
unique smallest σ-algebra M∗ that contains M and such that (S,M∗, µ) is
complete. (S,M∗, µ) is called the completion of (S,M, µ). Moreover, the
element of M∗ are precisely the sets of the form A ∪N , where A ∈ M and
N is a subset of a set of measure 0 in M.

Proof. Exercise.

Proposition 2.30. Let (S,M, µ) be a measure space and f : S → K mea-
surable with respect to M∗. Then, there exists a function g : S → K such
that g is measurable with respect to M and g does not differ from f outside
of a subset N ∈ M of measure 0.

Proof. By Theorem 2.23 there exists a sequence {fn}n∈N of simple maps
with respect to M∗ that converges pointwise to f . For each fn we can find
a set Nn ∈ M of measure 0 such that the function kn : S → K defined by
kn(p) = fn(p) if p ∈ S\Nn and kn(p) = 0 otherwise, is simple with respect to
M. (Exercise.Show this!) The set N :=

⋃∞
n=1Nn ∈ M has measure zero.



Robert Oeckl – RA NOTES – 15/11/2012 23

Moreover, gn : S → K defined by gn(p) = fn(p) if p ∈ S \N and gn(p) = 0
otherwise, is simple with respect to M. Moreover, the sequence {gn}n∈N
converges pointwise to g : S → K defined by g(p) = f(p) if p ∈ S \ N and
g(p) = 0 otherwise. Thus, by Theorem 2.19, g is measurable with respect to
M.

2.4 Extension of Measures

We now turn to the question of how to construct measures. We will focus
here on the method of extension. That is, we consider a measure that is
merely defined on an algebra of subsets and extend it to a measure on a
σ-algebra.

Definition 2.31. Let S be a set and M a σ-algebra of subsets of S. Then,
a map λ : M → [0,∞] is called an outer measure on M iff it satisfies the
following properties:

• λ(∅) = 0.

• Let A,B ∈ M and A ⊆ B. Then, λ(A) ≤ λ(B). (monotonicity)

• Let {An}n∈N be a sequence of elements of M. Then,

λ

(⋃
n∈N

An

)
≤
∑
n∈N

λ (An) . (countable subadditivity)

Lemma 2.32. Let S be a set, N an algebra of subsets of S and µ a measure
on N . On the σ-algebra P(S) of all subsets of S define the function λ :
P(S) → [0,∞] given by

λ(X) = inf

{∑
n∈N

µ(An) : An ∈ N ∀n ∈ N andX ⊆
⋃
n∈N

An

}
.

Then, λ is an outer measure on P(S). Moreover, it extends µ, i.e., λ(A) =
µ(A) for all A ∈ N .

Proof. Exercise.

Definition 2.33. Let S be a set and λ an outer measure on the σ-algebra
P(S) of all subsets of S. Then, A ⊆ S is called λ-measurable iff λ(X) =
λ(X ∩A) + λ(X ∩ ¬A) for all X ⊆ S.
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Lemma 2.34. Let S be a set and λ an outer measure on the σ-algebra P(S)
of all subsets of S. Let M be the set of subsets of S that are λ-measurable.
Then, M is a σ-algebra and λ is a complete measure on M.

Proof. Exercise.

Theorem 2.35 (Hahn). Let S be a set, N an algebra of subsets of S and µ
a measure on N . Then, µ can be extended to a σ-algebra M containing N
such that µ is a complete measure on M and for all X ∈ M we have

µ(X) = inf

{∑
n∈N

µ(An) : An ∈ N ∀n ∈ N andX ⊆
⋃
n∈N

An

}
.

Proof. Exercise.

Proposition 2.36 (Uniqueness of Extension). Let S be a measurable space
with σ-algebra M and measures µ1, µ2. Suppose there is an algebra N ⊆
M generating M and such that µ(A) := µ1(A) = µ2(A) for all A ∈ N .
Furthermore, assume that µ is σ-finite with respect to N . Then, µ1 = µ2

also on M.

Proof. Let {Xn}n∈N be a sequence of elements of N such that S =
⋃

n∈NXk

and Xn ⊆ Xn+1 and µ(Xn) < ∞ for all n ∈ N. (By σ-finiteness, there is
a sequence {Yk}k∈N with S =

⋃
k∈N Yk and µ(Yk) < ∞ for all k ∈ N. Now

set Xn :=
⋃n

k=1 Yk.) Define the finite measures µ1,n(A) := µ1(A ∩Xn) and
µ2,n(A) := µ2(A ∩Xn) on M for all n ∈ N. Now, let Bn be the subsets of
M where µ1,n and µ2,n agree. By construction, N ⊆ Bn for all n ∈ N. We
show that the Bn are monotone.

Fix n ∈ N. Let {Ak}k∈N be a sequence of elements of Bn such that Ak ⊆
Ak+1 for all k ∈ N and set A :=

⋃
k∈NAk. Then, using Proposition 2.26,

µ1,n(A) = lim
k→∞

µ1,n(Ak) = lim
k→∞

µ2,n(Ak) = µ2,n(A).

So, A ∈ Bn. Now, let {Ak}k∈N be a sequence of elements of Bn such that
Ak ⊇ Ak+1 for all k ∈ N and set A :=

⋂
k∈NAk. Again using Proposition 2.26

we get (note that the finiteness of the measure is essential here),

µ1,n(A) = lim
k→∞

µ1,n(Ak) = lim
k→∞

µ2,n(Ak) = µ2,n(A).

So, A ∈ Bn. Hence, Bn is monotone and by Proposition 2.9 we must have
M ⊆ Bn and hence M = Bn.

Thus, µ1,n = µ2,n for all n ∈ N. But then, µ1 = limn→∞ µ1,n =
limn→∞ µ2,n = µ2. This completes the proof.
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Proposition 2.37. Let (S,M, µ) be a measure space. Let N be an algebra
of subsets of S that generates M. Denote the completion of M with respect
to µ by M∗. Then, for any X ∈ M∗ with finite measure and any ε > 0 there
exists A ∈ N such that

µ((X \A) ∪ (A \X)) < ε.

Proof. Let X ∈ M∗. By Hahn’s Theorem 2.35 there exists a sequence
{An}n∈N of disjoint elements of N such that X ⊆

⋃
n∈NAn and

∞∑
n=1

µ(An) < µ(X) + ε/2.

Now fix k ∈ N such that
∞∑

n=k+1

µ(An) < ε/2.

Set A :=
⋃k

n=1An. Then, on the one hand,

µ(A \X) ≤ µ

(( ∞⋃
n=1

An

)
\X

)
< ε/2,

while on the other hand,

µ(X \A) ≤ µ

(( ∞⋃
n=1

An

)
\A

)
= µ

( ∞⋃
n=k+1

An

)
< ε/2.

This implies the statement.

2.5 The Lebesgue Measure

In the following we are going to construct the Lebesgue measure. This is the
unique (as we shall see) measure on the real numbers assigning to an interval
its length. The construction proceeds in various stages.

Lemma 2.38. The finite unions of intervals of the type [a, b), (−∞, a), and
[a,∞) together with ∅ form an algebra N of subsets of the real numbers.

Proof. Exercise.

Lemma 2.39. The prescription µ([a, b)) = b − a determines uniquely a
finitely additive function µ : N → [0,∞] on the algebra N considered above.
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Proof. Exercise.

Lemma 2.40. The function µ : N → [0,∞] defined above is countably
additive and thus a measure.

Proof. Let {An}n∈N be a sequence of pairwise disjoint elements of N such
that A :=

⋃
n∈N ∈ N . We wish to show that

µ(A) =
∑
n∈N

µ(An).

By finite additivity we have µ(A) ≥ µ(
⋃m

n=1An) =
∑m

n=1 µ(An) for all
m ∈ N and hence

µ(A) ≥
∑
n∈N

µ(An).

It remains to show the opposite inequality.
Assume at first that A is a finite interval [a, b). Then, A is the disjoint

union of a sequence of intervals {Ik}k∈N with Ik = [ak, bk) in such a way that
each An is the finite union of some Ik. (We also allow the degenerate case
ak = bk in which case Ik = ∅.) Fix now ε > 0 (with ε < b − a) and define
I ′k := (ak − 2−(k+1)ε, bk) for all k ∈ N. Then, the open sets {I ′k}k∈N cover
the compact interval [a, b− ε/2]. Thus, there is a finite set of indices I ⊂ N
such that [a, b − ε/2] ⊂

⋃
k∈I I

′
k. Then clearly also [a, b − ε/2) ⊂

⋃
k∈I I

′′
k ,

where I ′′k := [ak − 2−(k+1)ε, bk). By finite additivity of µ we get

µ([a, b− ε/2)) ≤ µ

(⋃
k∈I

I ′′k

)
≤
∑
k∈I

µ
(
I ′′k
)

=
∑
k∈I

(
µ(Ik) + ε2−(k+1)

)
≤ ε/2 +

∑
k∈I

µ(Ik).

But since µ(A) = µ([a, b−ε/2))+ε/2, we find µ(A) ≤ ε+
∑

k∈I µ(Ik). Thus,
there exists m ∈ N such that µ(A) ≤ ε +

∑m
n=1 µ(An). But since ε was

arbitrary we can conclude µ(A) ≤
∑

n∈N µ(An) and hence equality.
Exercise.Complete the proof.

Proposition 2.41. Consider the real numbers with its σ-algebra B of Borel
sets. Then, the prescription µ([a, b)) := b− a uniquely extends to a measure
µ : B → [0,∞].



Robert Oeckl – RA NOTES – 15/11/2012 27

Proof. By Lemmas 2.38, 2.39 and 2.40 the prescription uniquely defines
a measure µ on the algebra N of unions of intervals of the type [a, b),
(−∞, a), and [a,∞). By Theorem 2.35 µ extends to a σ-algebra M con-
taining N . But the σ-algebra generated by N is the σ-algebra B of Borel
sets. (Exercise.Show this!) So, in particular, we get a measure on B. By
Proposition 2.36 this is unique since µ is σ-finite on N . (Exercise.Show
this latter statement!)

Definition 2.42. The measure defined in the preceding Proposition is called
the Lebesgue measure on R.

Exercise 18. Consider the real numbers with the Lebesgue measure. De-
termine µ(Q) and µ(R \Q).

Exercise 19. The Cantor set C is a subset of the interval [0, 1]. It can be
described for example as

C =

∞⋂
n=0

(3n−1)/2⋃
k=0

[
2k

3n
,
2k + 1

3n

]
.

Show that µ(C) = 0.

Proposition 2.43. The Lebesgue measure is translation invariant, i.e., µ(A+
c) = µ(A) for any measurable A and c ∈ R.

Proof. Straightforward.

Exercise 20. Consider the following equivalence relation on R: Let x ∼ y
iff x−y ∈ Q. Now choose (using the axiom of choice) one representative out
of each equivalence class, such that this representative lies in [0, 1]. Call the
set obtained in this way A.

1. Show that (A+r)∩(A+s) = ∅ if r and s are distinct rational numbers.
Supposing that A is Lebesgue measurable, conclude that µ(A) = 0.

2. Show that R =
⋃

q∈Q(A+q). Supposing that A is Lebesgue measurable,
conclude that µ(A) > 0.

We obtain a contradiction showing that A is not Lebesgue measurable.

We can define the Lebesgue measure more generally for Rn. The intervals
of the type [a, b) are replaced by products of such intervals. Otherwise the
construction proceeds in parallel.
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Proposition 2.44. Consider Rn with its σ-algebra B of Borel sets. Then,
the prescription µ([a1, b1)× · · · × [an, bn)) = (b1 − a1) · · · (bn − an) uniquely
extends to a measure µ : B → [0,∞].

Exercise 21. Sketch the proof by explaining the changes with respect to
the one-dimensional case.
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3 The integral

3.1 The integral of simple functions

Definition 3.1. Let X be a measure space with measure µ. A simple
function X → K is called integrable iff it vanishes outside of a set of finite
measure. We denote the vector space of integrable simple functions on X
with respect to the measure µ by S(X,µ).

Exercise 22. Show that the integrable simple functions actually form an
algebra over K.

Definition 3.2. Let S be a measure space with measure µ. A (µ-)integral
is a collection of linear maps

S(X,µ) → K : f 7→
∫
X
f dµ,

one for each measurable subset X ⊆ S, satisfying the following properties:

• If X has finite measure, then
∫
X 1 dµ = µ(X), where 1 ∈ S(X,µ) is

the constant function with value 1.

• If X1, X2 ⊆ X are measurable such that X1∩X2 = ∅ and X1∪X2 = X,
and f ∈ S(X,µ) then

∫
X f dµ =

∫
X1

f dµ+
∫
X2

f dµ.

Proposition 3.3. The integral exists and is unique.

Proof. Exercise.

When it is clear with respect to which measure the integral is taken, the
symbol dµ may be omitted. When the integral is taken with respect to the
whole measure space and it is clear which measure space this is, the subscript
indicating the set over which is integrated may be omitted.

Proposition 3.4. The integral of integrable simple maps has the following
properties:

• If f and g are real valued and f(x) ≤ g(x) for all x ∈ X, then
∫
X f ≤∫

X g.

• If f(x) ≥ 0 for all x ∈ X and A ⊆ X is measurable, then
∫
A f ≤

∫
X f .

•
∣∣∫

X f
∣∣ ≤ ∫X |f |.
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• Suppose X has finite measure, then
∫
X |f | ≤ ‖f‖sup µ(X). (Here ‖·‖sup

denotes the supremum norm.)

Proof. Exercise.

Proposition 3.5. The space S(X,µ) carries a seminorm given by

‖f‖1 :=
∫
X
|f |dµ.

Proof. Exercise.

The fact that we only have a seminorm and not necessarily a norm comes
from the inability of the integral to "see" sets of measure zero.

Proposition 3.6. Let f ∈ S(X,µ). Then, ‖f‖1 = 0 iff f vanishes outside
a set of measure zero.

Proof. Exercise.

We also say "almost everywhere" to mean "outside a set of measure zero".

Lemma 3.7. Let (X,M, µ) be a measure space and N an algebra of subsets
of X that generates the σ-algebra M. Let f ∈ S(X,µ) and ε > 0. Then,
there exists g ∈ S(X,µ) such that g is measurable with respect to N (i.e.,
g−1({p}) ⊆ N for all p ∈ K) and such that ‖f − g‖1 < ε.

Proof. Exercise.Hint: Use Proposition 2.37.

3.2 Integrable functions

Lemma 3.8. Let {fn}n∈N be a Cauchy sequence of elements of S(X,µ)
with respect to the seminorm ‖ · ‖1. Then, there exists a subsequence which
converges pointwise almost everywhere to some measurable map f and for
any ε > 0 converges uniformly to f outside of a set of measure less than ε.

Proof. Since {fn}n∈N is Cauchy, there exists a subsequence {fnk
}k∈N such

that
‖fnl

− fnk
‖1 < 2−2k ∀k ∈ N and ∀l ≥ k.

Define
Yk := {x ∈ X : |fnk+1

(x)− fnk
(x)| ≥ 2−k} ∀k ∈ N.

Then,

2−kµ(Yk) ≤
∫
Yk

|fnk+1
− fnk

| ≤
∫
X
|fnk+1

− fnk
| ≤ 2−2k ∀k ∈ N.
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This implies, µ(Yk) ≤ 2−k for all k ∈ N. Define now Zj :=
⋃∞

k=j Yk for all
j ∈ N. Then, µ(Zj) ≤ 21−j for all j ∈ N.

Fix ε > 0 and choose j ∈ N such that 21−j < ε. Let x ∈ X \ Zj . Then,
for k ≥ j we have

|fnk+1
(x)− fnk

(x)| < 2−k.

Thus, the sum
∑∞

k=1 fnk+1
(x) − fnk

(x) converges absolutely. In particular,
the limit

f(x) := lim
l→∞

fnl
(x) = fn1(x) +

∞∑
l=1

fnl+1
(x)− fnl

(x)

exists. For all k ≥ j we have the estimate,

|f(x)− fnk
(x)| =

∣∣∣∣∣
∞∑
l=k

fnl+1
(x)− fnl

(x)

∣∣∣∣∣ ≤
∞∑
l=k

∣∣fnl+1
(x)− fnl

(x)
∣∣ ≤ 21−k

Thus, {fnk
}k∈N converges to f uniformly outside of Zj , where µ(Zj) < ε.

Repeating the argument for arbitrarily small ε we find that f is defined on
X \Z, where Z :=

⋂∞
j=1 Zj . Furthermore, {fnk

}k∈N converges to f pointwise
on X \Z. Note that µ(Z) = 0. By Theorem 2.19, f is measurable on X \Z.
We extend f to a measurable function on all of X by declaring f(x) = 0 if
x ∈ Z. This completes the proof.

Lemma 3.9. Let {fn}n∈N and {gn}n∈N be Cauchy sequences of elements
of S(X,µ) with respect to the seminorm ‖ · ‖1. Furthermore, assume that
both sequences converge pointwise almost everywhere to the same measurable
function f . Then, the following limits exist and are equal,

lim
n→∞

∫
X
fn = lim

n→∞

∫
X
gn.

Proof. It is easy to see that both limits exist (Exercise.). It remains to
show that they are equal. To this end consider the sequence formed by the
differences hn := fn − gn. Then, {hn}n∈N is a ‖ · ‖1-Cauchy sequence that
converges pointwise almost everywhere to zero. We need to show that the
limit limn→∞

∫
X hn (which we already know to exist) is equal to zero.

By Lemma 3.8 there exists a subsequence {hnk
}k∈N with the following

property: For any δ > 0 there exists a set Zδ with µ(Zδ) < δ such that the
subsequence converges absolutely and uniformly to 0 on X \ Zδ.
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Choose ε > 0 arbitrary. There exists m ∈ N such that ‖hn − hm‖1 < ε
for all n ≥ m. Let A be a set of finite measure, so that hm vanishes outside
of A. Then,∫

X\A
|hn| =

∫
X\A

|hn − hm| ≤
∫
X
|hn − hm| < ε ∀n ≥ m.

Set δ := ε/(1 + ‖hm‖sup) and ξ := ε/(1 + µ(A)). Then, there exists l ∈ N
such that nl ≥ m and |hnk

(x)| < ξ for all k ≥ l and x ∈ X \Zδ. This implies,∫
A\Zδ

|hnk
| ≤ µ(A \ Zδ) ξ ≤ µ(A) ξ < ε ∀k ≥ l.

On the other hand,∫
Zδ

|hn| ≤
∫
Zδ

|hn − hm|+
∫
Zδ

|hm|

≤ ‖hn − hm‖1 + µ(Zδ) ‖hm‖sup < 2ε ∀n ≥ m.

Taking the three integral estimates together we get∣∣∣∣∫
X
hnk

∣∣∣∣ ≤ ∫
X
|hnk

| ≤
∫
X\A

|hnk
|+
∫
A\Zδ

|hnk
|+
∫
Zδ

|hnk
| < 4ε ∀k ≥ l.

Since ε was arbitrary, we conclude

lim
n→∞

∫
X
hn = lim

k→∞

∫
X
hnk

= 0.

We are now ready to define the integral more generally.

Definition 3.10. A measurable map f on X is called integrable iff there
exists a ‖ · ‖1-Cauchy sequence of integrable simple maps that converges
pointwise to f almost everywhere. We denote the vector space of integrable
maps with values in K by L1(X,µ,K).

Exercise 23. Show that the integrable functions actually form a vector
space.

Definition 3.11. Let f ∈ L1(X,µ) and {fn}n∈N a Cauchy sequence of
elements of S(X,µ) that converges pointwise to f almost everywhere. We
define the (µ-)integral of f on X by∫

X
f := lim

n→∞

∫
X
fn.
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That this definition is well follows immediately from Lemma 3.9.

Proposition 3.12. Let f, g be measurable maps and f = g almost every-
where. Then f is integrable iff g is integrable. Moreover, then,∫

f =

∫
g.

Proof. Exercise.

Proposition 3.13. Let f be an integrable map. Then, f vanishes outside a
σ-finite set.

Proof. Exercise.

Lemma 3.14. Let f ∈ L1(X,µ) and {fn}n∈N a Cauchy sequence in S(X,µ)
which converges pointwise to f almost everywhere. Then, |f | ∈ L1(X,µ) and
{|fn|}n∈N is a Cauchy sequence in S(X,µ) which converges pointwise to |f |
almost everywhere.

Proof. Exercise.

Proposition 3.15. The space L1(X,µ) carries a seminorm given by

‖f‖1 :=
∫
X
|f |dµ.

Proof. Exercise.

Proposition 3.16. Let {fn}n∈N be a Cauchy sequence of elements of S(X,µ)
converging pointwise to f ∈ L1(X,µ) almost everywhere. Then, {fn}n∈N
converges to f in the ‖ · ‖1-seminorm. In particular, every integrable map
can be approximated arbitrarily well with respect to the ‖ · ‖1-seminorm by
integrable simple maps.

Proof. Fix ε > 0. Since {fn}n∈N is Cauchy there exists k ∈ N such that
‖fn−fm‖1 < ε for all n,m ≥ k. Fix now some n ≥ k. Then, {|fn−fm|}m∈N
is a Cauchy sequence of integrable simple maps and converges pointwise
almost everywhere to the integrable map |fn − f |. (Use Lemma 3.14.) So,
using the definition of the integral,

‖fn − f‖1 =
∫
X
|fn − f | = lim

m→∞

∫
X
|fn − fm| = lim

m→∞
‖fn − fm‖1 ≤ ε.

This implies the statement.



34 Robert Oeckl – RA NOTES – 15/11/2012

Theorem 3.17. The space L1(X,µ) is complete with respect to the semi-
norm ‖ · ‖1.

Proof. Consider a Cauchy sequence {fn}n∈N in L1(X,µ). Using Proposi-
tion 3.16 there is a sequence {gn}n∈N in S(X,µ) such that ‖fn − gn‖ < 1/n
for all n ∈ N. It is easy to see that {gn}n∈N is Cauchy. (Exercise.Show this!)
By Lemma 3.8 there is a subsequence {gnk

}k∈N which converges pointwise
almost everywhere to an integrable function f . Again using Proposition 3.16
this implies that {gnk

}k∈N converges to f in the ‖ · ‖1-seminorm. But since
{gn}n∈N is Cauchy, by Proposition 1.45 it must also converge to f in the
‖ · ‖1-seminorm. In particular, for ε > 0 there exists k ∈ N such that
‖f − gn‖1 < ε/2 for all n ≥ k. But then, for all n ≥ sup{k, 2/ε} we have

‖f − fn‖1 ≤ ‖f − gn‖1 + ‖gn − fn‖1 < ε/2 + 1/n ≤ ε.

That is, {fn}n∈N converges to f in the ‖ · ‖1-seminorm.

3.3 Elementary properties of the integral

Proposition 3.18. The integral of integrable maps has the following prop-
erties:

• If X1, X2 are measurable such that X = X1∪X2 and X1∩X2 = ∅ then∫
X f =

∫
X1

f +
∫
X2

f

• If f and g are real valued and f(x) ≤ g(x) for almost all x ∈ X, then∫
X f ≤

∫
X g.

• If f and g are real valued and integrable, then sup(f, g) and inf(f, g)
are integrable.

•
∣∣∫

X f
∣∣ ≤ ∫X |f |.

• Suppose X has finite measure and f is bounded, then
∫
X |f | ≤ ‖f‖sup µ(X).

Proof. Exercise.

Proposition 3.19. Let X be a measurable space, f : X → R, g : X → R
maps. Then, f + ig : X → C is integrable iff f and g are integrable.

Proof. Exercise.
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Theorem 3.20 (Averaging Theorem). Let X be a measure space with σ-
finite measure µ. Let S ⊆ K be a closed subset and f ∈ L1(X,µ,K). If for
any measurable set A of finite and positive measure we have

1

µ(A)

∫
A
fdµ ∈ S,

then f(x) ∈ S for almost all x ∈ X.

Proof. Let C := {x ∈ X : f(x) /∈ S}. We need to show that µ(C) = 0.
Assume the contrary, i.e., µ(C) > 0. Write K \ S =

⋃
n∈NBn as a countable

union of closed balls {Bn}n∈N. (Use second countability of K and recall
Proposition 1.39.) Their preimages are measurable and cover C. There
is at least one closed ball Bn such that µ(f−1(Bn)) > 0. Say this closed
ball has center x and radius r. Furthermore, there is a measurable subset
D ⊆ f−1(Bn) such that 0 < µ(D) < ∞. Then,∣∣∣∣ 1

µ(D)

∫
D
f dµ− x

∣∣∣∣ = 1

µ(D)

∣∣∣∣∫
D
(f − x) dµ

∣∣∣∣
≤ 1

µ(D)

∫
D
|f − x|dµ ≤ 1

µ(D)

∫
D
r dµ = r.

In particular, 1
µ(D)

∫
D f dµ ∈ Bn. But Bn ∩ S = ∅, so we get a contradiction

with the assumptions.

Exercise 24. 1. Explain where in the above proof σ-finiteness was used.
2. Extend the proof to the case where µ is not σ-finite by replacing f(x) ∈ S
with f(x) ∈ S ∪ {0} in the statement of the Theorem.

Proposition 3.21. Let f ∈ L1 and assume
∫
A f = 0 for all measurable sets

A. Then, f = 0 almost everywhere.

Proof. Exercise.

Proposition 3.22. Let f be an integrable function. Then, ‖f‖1 = 0 iff
f = 0 almost everywhere.

Proof. Exercise.

Proposition 3.23. Let (X,M, µ) be a measure space and N an algebra of
subsets of X that generates the σ-algebra M. Let M∗ denote the completion
of M with respect to µ. Let f ∈ L1(X,M∗, µ) and ε > 0. Then, there
exists g ∈ S(X,µ) such that g is measurable with respect to N and such that
‖f − g‖1 < ε.

Proof. This is clear from combining Proposition 3.16 with Lemma 3.7.
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3.4 Integrals and limits

Theorem 3.24. Let {fn}n∈N be a sequence in L1(X,µ) converging to f ∈
L1(X,µ) in the ‖ · ‖1-seminorm. Then, there exists a subsequence which
converges pointwise almost everywhere to f and for any ε > 0 converges
uniformly to f outside of a set of measure less than ε.

Proof. We first consider the special case f = 0. The proof proceeds in a way
similar to that of Lemma 3.8. Consider a subsequence such that

‖fnk
‖1 < 2−2k ∀k ∈ N.

Define
Yk := {x ∈ X : |fnk

(x)| ≥ 2−k} ∀k ∈ N.

Then,

2−kµ(Yk) ≤
∫
Yk

|fnk
| ≤

∫
X
|fnk

| ≤ 2−2k ∀k ∈ N.

This implies, µ(Yk) ≤ 2−k for all k ∈ N. Define now Zj :=
⋃∞

k=j Yk for all
j ∈ N. Then, µ(Zj) ≤ 21−j for all j ∈ N.

Fix ε > 0 and choose j ∈ N such that 21−j < ε. If x /∈ Zj then for k ≥ j
we have

|fnk
(x)| < 2−k.

Thus, {fnk
}k∈N converges to 0 uniformly outside of Zj , where µ(Zj) < ε.

Also, {fnk
(x)}k∈N converges to 0 if x /∈ Z :=

⋂∞
j=1 Zj . Note that µ(Z) = 0.

In the general case f 6= 0 we apply the previous proof to the sequence
{fn − f}n∈N.

Proposition 3.25. Let {fn}n∈N be a Cauchy sequence in L1(X,µ) converg-
ing pointwise to the measurable function f almost everywhere. Then f is
integrable and {fn}n∈N converges to f in the ‖ · ‖1-seminorm.

Proof. By Theorem 3.17 there exists an integrable function g such that
{fn}n∈N converges to g in the ‖ · ‖1-seminorm. By Theorem 3.24 a sub-
sequence {fnk

}k∈N converges to g pointwise almost everywhere, i.e., outside
a set Zg of measure zero. On the other hand {fn}n∈N (and any of its subse-
quences) converges to f almost everywhere, i.e., outside a set Zf of measure
zero. Thus, f = g almost everywhere, i.e., outside the set of measure zero
Zg ∪ Zf . By Proposition 3.12, f is integrable. Moreover, ‖f − g‖1 = 0 and
hence {fn}n∈N converges to f in the ‖ · ‖1-seminorm.
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Theorem 3.26 (Monotone Convergence Theorem). Let {fn}n∈N be a point-
wise increasing sequence of real valued functions in L1(X,µ) such that there
exists a constant c ∈ R with∫

X
fn ≤ c ∀n ∈ N.

Then, the sequence {fn}n∈N converges to some function f ∈ L1(X,µ) in the
‖ · ‖1-seminorm and also converges pointwise to f almost everywhere.

Proof. The sequence {
∫
X fn}n∈N is increasing and bounded and thus con-

verges. In particular, it is a Cauchy sequence. But∣∣∣∣∫
X
fn −

∫
X
fm

∣∣∣∣ = ∫
X
|fn − fm| = ‖fn − fm‖1 ∀n,m ∈ N,

since {fn}n∈N is pointwise increasing. So, {fn}n∈N is a Cauchy sequence in
the ‖ · ‖1-seminorm. By completeness (Theorem 3.17) there exists a function
f ∈ L1(X,µ) so that {fn}n∈N converges to f in the ‖ · ‖1-seminorm. By
Theorem 3.24 there exists a subsequence {fnk

}k∈N that converges pointwise
to f almost everywhere. But, since {fn(x)}n∈N is increasing for all x ∈ X, it
must converge for any x ∈ X where a subsequence converges. Thus, {fn}n∈N
converges to f almost everywhere.

Proposition 3.27. Let {fn}n∈N be a sequence of real valued integrable func-
tions such that there exists a real valued integrable function g with fn ≤ g
for all n ∈ N. Then, supn∈N fn is integrable and,

sup
n∈N

∫
X
fn ≤

∫
X
sup
n∈N

fn.

Proof. Since {fn}n∈N is bounded pointwise by g, the function supn∈N fn is
well defined. Set gn := sup{f1, . . . , fn} for all n ∈ N. Then, {gn}n∈N is a
pointwise increasing sequence of integrable functions. In particular, the gn
are measurable and so is by Theorem 2.19 their limit limn→∞ gn = supn∈N fn.
Moreover,

∫
X gn ≤

∫
X g for all n ∈ N. Thus, we can apply Theorem 3.26 and

there exists an integrable function f to which {gn}n∈N converges pointwise
almost everywhere. Thus, f = supn∈N fn almost everywhere and supn∈N fn
is integrable by Proposition 3.12. For the inequality observe that fk ≤
supn∈N fn for all k ∈ N. Hence,

∫
X fk ≤

∫
X supn∈N fn for all k ∈ N. Taking

the supremum over k ∈ N implies the claimed inequality.
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Proposition 3.28 (Fatou’s Lemma). Let {fn}n∈N be a sequence of real val-
ued integrable functions such that there exists a real valued integrable function
g with fn ≥ g for all n ∈ N. Assume furthermore that lim infn→∞

∫
X fn ex-

ists. Then, f(x) := lim infn→∞ fn(x) exists almost everywhere and can be
extended to an integrable function on X. Furthermore,∫

X
f ≤ lim inf

n→∞

∫
X
fn.

Proof. Fix k ∈ N and apply Proposition 3.27 to the sequence {−fk+n−1}n∈N.
Thus, hk := infn≥k fn is integrable and∫

X
hk ≤ inf

n≥k

∫
X
fn ≤ lim inf

n→∞

∫
X
fn ∀k ∈ N.

But the sequence {hk}k∈N is increasing and has bounded integral, so we can
apply Theorem 3.26. Thus {hk}k∈N converges pointwise almost everywhere
to an integrable function f and

lim
k→∞

∫
X
hk =

∫
X
f.

Thus, ∫
X
f ≤ lim inf

n→∞

∫
X
fn.

But f(x) = limk→∞ hk(x) = lim infn→∞ fn(x) almost everywhere. This
completes the proof.

Theorem 3.29 (Dominated Convergence Theorem). Let {fn}n∈N be a se-
quence of integrable functions such that there exists a real valued integrable
function g with |fn| ≤ g for all n ∈ N. Assume also that {fn}n∈N con-
verges pointwise almost everywhere to a measurable function f . Then, f is
integrable and {fn}n∈N converges to f in the ‖ · ‖1-seminorm.

Proof. Fix k ∈ N. Consider the set of real valued integrable functions {|fn−
fm|}(n,m)∈I×I where I = {k, k+1, . . . }. Since |fn−fm| ≤ 2g for all n,m ∈ I
we can apply Proposition 3.27 and conclude that gk := supn,m≥k |fn− fm| is
integrable. The {gk}k∈N form a pointwise decreasing sequence and

∫
x gk ≥ 0.

So we can apply Theorem 3.26 to {−gk}k∈N. Since we already know that
{gk}k∈N converges pointwise to zero almost everywhere we conclude that it
also converges to zero in the ‖ · ‖1-seminorm. This implies that {fn}n∈N
is a Cauchy sequence. (Exercise.Show this!) By Proposition 3.25, f is
integrable and {fn}n∈N converges to f in the ‖ · ‖1-seminorm.
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Proposition 3.30. Let f be a measurable function. Then, f is integrable iff
|f | is integrable. Moreover, if |f | ≤ g for some real valued integrable function
g, then f is integrable.

Proof. By Lemma 3.14 integrability of |f | follows from integrability of f . It
remains to show that given g integrable and real valued such that |f | ≤ g,
f is integrable. Firstly, since g is integrable, it vanishes outside a σ-finite
set A by Proposition 3.13. The same is thus true of f . Let {An}n∈N be an
increasing sequence of sets of finite measure such that A =

⋃
n∈NAn. By

Theorem 2.23, there is a sequence {fn}n∈N of simple maps that converges
pointwise to f . Define a sequence of maps {hn}n∈N as follows:

hn(x) :=

{
fn(x) ifx ∈ An and |fn(x)| ≤ 2g(x)

0 otherwise

It is easy to see that hn is an integrable simple map for each n ∈ N.
(Exercise.Show this!) Moreover, the sequence {hn}n∈N converges point-
wise to f and we have |hn| ≤ 2g for all n ∈ N. Applying Theorem 3.29
shows that f is integrable.

Proposition 3.31. Let {fn}n∈N be a sequence of integrable functions con-
verging pointwise almost everywhere to a measurable function f . Assume
also that there is a constant c ∈ R such that ‖fn‖1 ≤ c for all n ∈ N. Then,
f is integrable.

Proof. {|fn|}n∈N is a sequence of non-negative valued integrable functions
converging pointwise to the measurable function |f |. The sequence {

∫
X |fn|}n∈N

takes values in the compact interval [0, c] and thus must have a point of ac-
cumulation (Proposition 1.34). Together with boundedness from below this
implies the existence of lim infn→∞

∫
x |fn| and we can apply Proposition 3.28.

By assumption |f(x)| = limn→∞ |fn(x)| = lim infn→∞ |fn(x)| almost every-
where, so |f | is integrable. By Proposition 3.30, f is integrable.

3.5 Exercises

Exercise 25 (Lang). Consider the interval [0, 1] with the Lebesgue measure
µ. Let {fn}n∈N be a sequence of continuous functions fn : [0, 1] → [0, 1]
which converges pointwise to 0 everywhere. Show that

lim
n→∞

∫ 1

0
fn dµ = 0.
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Exercise 26 (Lang). Let X,Y be measurable spaces and f : X → Y a
measurable map. Denote the σ-algebra on X by M and the σ-algebra on Y
by N . Let µ be a positive measure on M. Define a function ν : N → [0,∞]
as follows: ν(N) := µ(f−1(N)). Show that ν is a positive measure on N .
Moreover show that if g ∈ L1(Y, ν), then g ◦ f ∈ L1(X,µ) and∫

X
g ◦ f dµ =

∫
Y
g dν.

Exercise 27 (Lang, extended). Let X be a measure space with finite mea-
sure µ and f ∈ L1(X,µ). Show that the limit

lim
n→∞

∫
X
|f |1/n dµ

exists and compute it. Give an example where the limit does not exist if
µ(X) = ∞.

Exercise 28 (Fundamental Theorem of Differentiation and Integration).
Let f : R → R be continuously differentiable and a, b ∈ R with a ≤ b. Then,∫ b

a
f ′ dµ = f(b)− f(a),

where µ is the Lebesgue measure. [Hint: Note that f ′ is integrable on [a, b].
Consider the map g : R → R given by g(y) :=

∫ y
a f ′ dµ. Show that g is

continuously differentiable and that g′ = f ′. Apply the fact that a function
with vanishing derivative is constant to the difference f − g to conclude the
proof.]

Exercise 29 (Partial Integration). Let f, g : R → R be continuously differ-
entiable and a, b ∈ R with a ≤ b. Show that,∫ b

a
fg′ dµ = fg|ba −

∫ b

a
f ′g dµ,

where dµ is the Lebesgue measure.

Exercise 30 (adapted from Lang). Equip the space [0,∞] with the topology
of the one-point compactification by adding the point ∞ to the interval [0,∞)
with its usual topology. (Recall Exercise 2).

• Let X be a measurable space and f : X → [0,∞]. Let Y := f−1([0,∞)).
Show that f is a measurable function iff Y is a measurable set and
f |Y : Y → [0,∞) is a measurable function.
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• Let X be a measure space with σ-finite measure µ. Show that f : X →
[0,∞] is measurable iff there exists an increasing sequence {fn}n∈N of
integrable simple functions fn : X → [0,∞) which converges pointwise
to f .

• (X and µ as above.) Let f : X → [0,∞] measurable. Let {fn}n∈N be
an increasing sequence of integrable simple maps converging pointwise
to f . Define the integral of f to be,

lim
n→∞

∫
X
fn dµ.

Show that this does not depend on the choice of sequence. Also show
that this coincides with the usual definition of integral if f(X) ⊆ [0,∞)
and if f is integrable. Formulate and prove an adapted version of the
Monotone Convergence Theorem (Theorem 3.26).

• (X and µ as above.) Let f : X → [0,∞] measurable. For each mea-
surable subset A ⊆ X define

µf (A) :=

∫
A
f dµ.

Show that µf is a positive measure. Let g : X → [0,∞] measurable
and show that, ∫

X
g dµf =

∫
X
fg dµ.
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4 The spaces Lp and Lp

4.1 Elementary inequalities and seminorms

Lemma 4.1. Let a, b ≥ 0 and p ≥ 1. Then,(
a+ b

2

)p

≤ ap + bp

2
.

Let a, b ≥ 0 and p > 1. Set q such that 1/p+ 1/q = 1. Then,

a1/pb1/q ≤ a

p
+

b

q
.

Proof. Exercise.

Definition 4.2. Let X be a measure space with measure µ and p > 0.

Lp(X,µ,K) := {f : X → Kmeasurable : |f |p integrable} .

Define also the function ‖ · ‖p : Lp(X,µ,K) → R+
0 given by

‖f‖p :=
(∫

X
|f |p

)1/p

.

Proposition 4.3. The set Lp(X,µ,K) for p ∈ (0,∞) is a vector space.
Also, ‖ · ‖p is multiplicative, i.e., ‖λf‖p = |λ|‖f‖p for all λ ∈ K and f ∈ Lp.
Furthermore, if p ≤ 1 the function dp : Lp(X,µ,K) × Lp(X,µ,K) → [0,∞)
given by dp(f, g) := ‖f − g‖pp is a pseudometric.

Proof. Exercise.

Definition 4.4. Let X be a measure space with measure µ. We call a
measurable function f : X → K essentially bounded iff there exists a bounded
measurable function g : X → K such that g = f almost everywhere. We
denote the set of essentially bounded functions by L∞(X,µ,K). Define also
the function ‖ · ‖∞ : L∞(X,µ,K) → R+

0 given by

‖f‖∞ := inf {‖g‖sup : g = f a.e. and g bounded measurable} .

Proposition 4.5. The set L∞(X,µ,K) is a vector space and ‖ · ‖∞ is a
seminorm.

Proof. Exercise.
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Proposition 4.6. Let f, g be measurable maps such that f = g almost ev-
erywhere. Let p ∈ (0,∞]. Then, f ∈ Lp iff g ∈ Lp.

Proof. Apply Proposition 3.12 to |f |p and |g|p.

Proposition 4.7. Let f ∈ Lp for p ∈ (0,∞). Then, f vanishes outside of a
σ-finite set.

Proof. By Proposition 3.13, |f |p vanishes outside a σ-finite set and hence so
does f .

Proposition 4.8. Let f ∈ L∞. Then, the set {x : |f(x)| > ‖f‖∞} has
measure zero. Moreover, there exists g ∈ L∞ bounded such that g = f
almost everywhere and ‖g‖sup = ‖g‖∞ = ‖f‖∞.

Proof. Fix c > 0 and consider the set Ac := {x : |f(x)| ≥ ‖f‖∞ + c}.
Since there exists a bounded measurable function g such that g = f almost
everywhere and ‖g‖sup < ‖f‖∞+c we must have µ(Ac) = 0. Thus {A1/n}n∈N
is an increasing sequence of sets of measure zero. So, their union A :=⋃

n∈NAn = {x : |f(x)| > ‖f‖∞} must have measure zero. Define now

g(x) :=

{
f(x) ifx ∈ X \A
0 ifx ∈ A

.

Then, g is measurable, bounded, and g = f almost everywhere. Moreover,
‖g‖sup ≤ ‖f‖∞. On, the other hand, since g = f almost everywhere we
must have ‖g‖sup ≥ ‖f‖∞ by the definition of ‖ · ‖∞. Also, f − g = 0 almost
everywhere and hence ‖f − g‖∞ ≤ ‖0‖sup, i.e., ‖f − g‖∞ = 0 and thus
‖f‖∞ = ‖g‖∞.

Proposition 4.9. Let f ∈ Lp for p ∈ (0,∞]. Then ‖f‖p = 0 iff f = 0
almost everywhere.

Proof. If p < ∞ apply Proposition 3.22 to |f |p. Exercise.Complete the
proof for p = ∞.

Theorem 4.10 (Hölder’s inequality). Let p ∈ [1,∞] and q such that 1/p+
1/q = 1. Given f ∈ Lp and g ∈ Lq we have fg ∈ L1 and,

‖fg‖1 ≤ ‖f‖p‖g‖q.
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Proof. First observe that fg is measurable by Proposition 2.18 since f and
g are measurable.

We start with the case p = 1 and q = ∞. (The case q = 1 and p = ∞
is analogous.) By Proposition 4.8 there is a bounded function h ∈ L∞ such
that h = g almost everywhere and ‖h‖sup = ‖g‖∞. We have

|fh| ≤ |f |‖h‖sup.

Thus, |fh| is bounded from above by an integrable function and hence fh is
integrable by Proposition 3.30. But fh = fg almost everywhere and so fg is
integrable by Proposition 3.12. Moreover, integrating the above inequality
over X we obtain,

‖fg‖1 =
∫
X
|fg| =

∫
X
|fh| ≤ ‖h‖sup

∫
X
|f | = ‖f‖1‖g‖∞.

It remains to consider the case p ∈ (1,∞). If ‖f‖p = 0 or ‖g‖q = 0 then
f or g vanishes almost everywhere by Proposition 4.9. Thus, fg vanishes
almost everywhere and ‖fg‖1 = 0 by the same Proposition (and in particular
fg ∈ L1). We thus assume now ‖f‖p 6= 0 and ‖g‖q 6= 0. Set

a :=
|f |p

‖f‖pp
, and b :=

|g|q

‖g‖qq
.

Using the second inequality of Lemma 4.1 we find,

|fg|
‖f‖p‖g‖q

≤ 1

p

|f |p

‖f‖pp
+

1

q

|g|q

‖g‖qq
.

This implies that |fg| is bounded from above by an integrable function and
is hence integrable by Proposition 3.30. Moreover, integrating both sides of
the inequality over X yields the inequality that is to be demonstrated.

Proposition 4.11 (Minkowski’s inequality). Let p ∈ [1,∞] and f, g ∈ Lp.
Then,

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

In particular, ‖ · ‖p is a seminorm.

Proof. The case p = 1 is already implied by Proposition 3.15 while the case
p = ∞ is implied by Proposition 4.5. We may thus assume p ∈ (1,∞). Set
q such that 1/p+ 1/q = 1. We have,

|f + g|p ≤ |f ||f + g|p−1 + |g||f + g|p−1.
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Notice that |f + g|p−1 ∈ Lq so that the two summands on the right hand
side are integrable by Theorem 4.10. Integrating on both sides and applying
Hölder’s inequality to both summands on the right hand side yields,

‖f + g‖pp ≤ ‖f‖p‖|f + g|p−1‖q + ‖g‖p‖|f + g|p−1‖q

Noticing that ‖|f + g|p−1‖q = ‖f + g‖p−1
p we find,

‖f + g‖pp ≤ (‖f‖p + ‖g‖p)‖f + g‖p−1
p .

Dividing by ‖f + g‖p−1
p yields the desired inequality. This is nothing but

the triangle inequality for ‖ · ‖p. The other properties making this into a
seminorm are immediately verified.

4.2 Properties of Lp spaces

Theorem 4.12. Let p ∈ [1,∞) and {fn}n∈N be a Cauchy sequence in Lp.
Then, the sequence converges to some f ∈ Lp in the ‖ · ‖p-seminorm. That
is, Lp is complete. Furthermore, there exists a subsequence which converges
pointwise almost everywhere to f and for any ε > 0 converges uniformly to
f outside of a set of measure less than ε.

Proof. Since {fn}n∈N is Cauchy, there exists a subsequence {fnk
}k∈N such

that
‖fnl

− fnk
‖p < 2−2k ∀k ∈ N and ∀l ≥ k.

Define
Yk := {x ∈ X : |fnk+1

(x)− fnk
(x)| ≥ 2−k} ∀k ∈ N.

Then,

2−kpµ(Yk) ≤
∫
Yk

|fnk+1
− fnk

|p ≤
∫
X
|fnk+1

− fnk
|p < 2−2kp ∀k ∈ N.

This implies, µ(Yk) < 2−kp ≤ 2−k for all k ∈ N. Define now Zj :=
⋃∞

k=j Yk
for all j ∈ N. Then, µ(Zj) ≤ 21−j for all j ∈ N.

Fix ε > 0 and choose j ∈ N such that 21−j < ε. Let x ∈ X \ Zj . Then,
for k ≥ j we have

|fnk+1
(x)− fnk

(x)| < 2−k.

Thus, the sum
∑∞

k=1 fnk+1
(x) − fnk

(x) converges absolutely. In particular,
the limit

f(x) := lim
l→∞

fnl
(x) = fn1(x) +

∞∑
l=1

fnl+1
(x)− fnl

(x)
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exists. For all k ≥ j we have the estimate,

|f(x)− fnk
(x)| =

∣∣∣∣∣
∞∑
l=k

fnl+1
(x)− fnl

(x)

∣∣∣∣∣ ≤
∞∑
l=k

∣∣fnl+1
(x)− fnl

(x)
∣∣ ≤ 21−k

Thus, {fnk
}k∈N converges to f uniformly outside of Zj , where µ(Zj) < ε.

Repeating the argument for arbitrarily small ε we find that f is defined on
X \Z, where Z :=

⋂∞
j=1 Zj . Furthermore, {fnk

}k∈N converges to f pointwise
on X \Z. Note that µ(Z) = 0. By Theorem 2.19, f is measurable on X \Z.
We extend f to a measurable function on all of X by declaring f(x) = 0 if
x ∈ Z.

For fixed k ∈ N consider the sequence {gl}l∈N of integrable functions
given by

gl := |fnl
− fnk

|p.

Since the sequence {
∫
X gl}l∈N is bounded, lim inf l→∞

∫
X gl exists and we

can apply Proposition 3.28. Thus, there exists an integrable function g and
g(x) = lim inf l→∞ gl(x) almost everywhere. We conclude that g = |f − fnk

|p
almost everywhere. In particular, since g is integrable, f − fnk

∈ Lp and so
also f ∈ Lp. Moreover,∫

X
|f − fnk

|p ≤ lim inf
l→∞

∫
X
|fnl

− fnk
|p < 2−2kp.

In particular,
‖f − fnk

‖p < 2−2k.

So {fnk
}k∈N and therefore also {fn}n∈N converges to f in the ‖·‖p-seminorm.

Theorem 4.13. Let {fn}n∈N be a Cauchy sequence in L∞. Then, the se-
quence converges uniformly almost everywhere to a function f ∈ L∞. Fur-
thermore, the sequence converges to f in the L∞-seminorm. In particular,
L∞ is complete.

Proof. Define Zn := {x ∈ X : |fn(x)| > ‖fn‖∞} for all n ∈ N and Yn,m :=
{x ∈ X : |fn(x)− fm(x)| > ‖fn − fm‖∞}. By Proposition 4.8 µ(Zn) = 0 for
all n ∈ N and µ(Yn,m) = 0 for all n,m ∈ N. Define

Z :=

(⋃
n∈N

Zn

)
∪

 ⋃
n,m∈N

Yn,m

 .
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Then, µ(Z) = 0. So, {fn(x)}n∈N converges uniformly on X \ Z to some
measurable function f . We extend f to a measurable function on all of X
by defining f(x) = 0 if x ∈ Z. Exercise.Complete the proof.

Theorem 4.14 (Monotone Convergence Theorem in Lp). Let p ∈ [1,∞).
Let {fn}n∈N be a pointwise increasing sequence of real valued functions in
Lp such that there exists a constant c ∈ R with ‖fn‖p ≤ c for all n ∈ N.
Then, the sequence {fn}n∈N converges to some function f ∈ Lp in the ‖ · ‖p-
seminorm and also converges pointwise to f almost everywhere.

Proof. Exercise.

Theorem 4.15 (Dominated Convergence Theorem in Lp). Let p ∈ [1,∞).
Let {fn}n∈N be a sequence of functions in Lp such that there exists a real
valued function g ∈ Lp with |fn| ≤ g for all n ∈ N. Assume also that
{fn}n∈N converges pointwise almost everywhere to a measurable function f .
Then, f ∈ Lp and {fn}n∈N converges to f in the ‖ · ‖p-seminorm.

Proof. Exercise.Prove this by suitably adapting the proof of Theorem 3.29.
Hint: Replace |fn − fm| by |fn − fm|p, and apply Theorem 4.12 instead of
Proposition 3.25.

Proposition 4.16. Let p ∈ [1,∞). Then, S ⊆ Lp is a dense subset.

Proof. If f is an integrable simple function f , then |f |p is also integrable
simple. So, S is a subset of Lp. Now consider f ∈ Lp. We need to con-
struct a sequence of integrable simple functions that converges to f in the
‖ · ‖p-seminorm. Exercise.Do this by appropriately modifying the proof of
Proposition 3.30.

Proposition 4.17. The simple maps form a dense subset of L∞.

Proof. Let f ∈ L∞ and fix ε > 0. The statement follows if we can show that
there exists a simple map h such that ‖f−h‖∞ < ε. By Proposition 4.8 there
is a bounded map g ∈ L∞ such that g = f almost everywhere and ‖g‖sup =
‖f‖∞. Since g is bounded, its image A ⊂ K is bounded and thus contained
in a compact set. This means that we can cover A by a finite number
of open balls {Bk}k∈{1,...,n} of radius ε. Denote the centers of the balls by
{xk}k∈{1,...,n}. Now take measurable subsets Ck ⊆ Bk such that Ci∩Cj = ∅ if
i 6= j while still covering A, i.e., A ⊆

⋃
k∈{1,...,n}Ck. (Exercise.Explain how

this can be done.) Define Dk := g−1(CK). {Dk}k∈{1,...,k} form a measurable
partition of X. Now set h(x) := xk if x ∈ Dk. Then, h is simple and
‖f − h‖∞ = ‖g − h‖∞ ≤ ‖g − h‖sup < ε.
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Exercise 31. The Monotone Convergence Theorem (Theorem 3.26) and the
Dominated Convergence Theorem (Theorem 3.29 or 4.15) are not true in L∞.
Give a counterexample to both. More precisely, give a pointwise increasing
sequence {fn}n∈N of real non-negative valued functions fn ∈ L∞ on some
measure space X such that {fn}n∈N converges pointwise to some f ∈ L∞,
but {fn}n∈N does not converge to any function in the ‖ · ‖∞-seminorm.

We have seen already that the spaces Lp with p ∈ [1,∞] are vector spaces
with a seminorm ‖ · ‖p and are complete with respect to this seminorm. In
order to convert a vector space with a seminorm into a vector space with a
norm, we may quotient by those elements whose seminorm is zero.

Definition 4.18. Let p ∈ [1,∞]. Then the quotient space Lp/ ∼ in the
sense of Proposition 1.59 is denoted by Lp. It is a Banach space.

Banach spaces have many useful properties that make it easy to work
with them. So usually, one works with the spaces Lp instead of the spaces
Lp. Nevertheless one can still think of the these as "spaces of functions"
even though they are spaces of equivalence classes. But (because of Propo-
sition 4.9) two functions are in one equivalence class only if they are "essen-
tially the same", i.e., equal almost everywhere.

Proposition 4.19. Let p, q ∈ (0,∞] and set r ∈ (0,∞] such that 1/r =
1/p+ 1/q. Then, given f ∈ Lp and g ∈ Lq we have fg ∈ Lr. Moreover, the
following inequality holds,

‖fg‖r ≤ ‖f‖p‖g‖q.

Proof. Exercise.[Hint: For f ∈ Lp and g ∈ Lq apply Hölder’s Theorem
(Theorem 4.10) to |f |r and |g|r, in the case r < ∞. Treat the case r = ∞
separately.]

Proposition 4.20. Let 0 < p ≤ q < r ≤ ∞. Then, Lp∩Lr ⊆ Lq. Moreover,
if r < ∞,

‖f‖q(r−p)
q ≤ ‖f‖p(r−q)

p ‖f‖r(q−p)
r ∀f ∈ Lp ∩ Lr.

If r = ∞ we have,

‖f‖qq ≤ ‖f‖pp ‖f‖q−p
∞ ∀f ∈ Lp ∩ L∞.

If p ≥ 1, then also Lp ∩ Lr ⊆ Lq.

Proof. Exercise.
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Proposition 4.21. Let X be a measure space with finite measure µ. Let
0 < p ≤ q ≤ ∞. Then, Lq(X,µ) ⊆ Lp(X,µ). Moreover,

‖f‖p ≤ ‖f‖q (µ(X))1/p−1/q ∀f ∈ Lq(X,µ).

If p ≥ 1, then also Lq(X,µ) ⊆ Lp(X,µ).

Proof. Exercise.

Lemma 4.22. Let X be a measure space with σ-finite measure µ and let
p ∈ (0,∞). Then, there exists a function w ∈ Lp(X,µ) such that 0 < w < 1.

Proof. Let {Xn}n∈N be a sequence of disjoint sets of finite measure such that
X =

⋃
n∈NXn. Define

w(x) :=

(
2−n

1 + µ(Xn)

)1/p

ifx ∈ Xn.

This has the desired properties. Exercise.Show this.

Exercise 32 (adapted from Lang). Let X be a measure space with σ-finite
measure µ and let p ∈ [1,∞). Let T : Lp → Lp be a bounded linear
map. For each g ∈ L∞ consider the bounded linear map Mg : Lp → Lp

given by f 7→ gf . Assume that T and Mg commute for all g ∈ L∞, i.e.,
T ◦ Mg = Mg ◦ T . Show that T = Mh for some h ∈ L∞. [Hint: Use
Lemma 4.22 to obtain a function w ∈ Lp ∩ L∞ with 0 < w. Then, for
f ∈ Lp ∩ L∞ we have

T (wf) = wT (f) = fT (w).

If we define h := T (w)/w we thus have T (f) = hf . Prove that h is es-
sentially bounded by contradiction: Assume it is not and consider sets of
positive measure where |h| > c for some constant c and evaluate T on the
characteristic function of such sets. Finally, prove that T (f) = hf for all
f ∈ Lp.]
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4.3 Hilbert spaces and L2

Definition 4.23. Let V be a complex vector space and 〈·, ·〉 : V ×V → C a
map. 〈·, ·〉 is called a sesquilinear form iff it satisfies the following properties:

• 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 and
〈u, v + w〉 = 〈u, v〉+ 〈u,w〉 for all u, v, w ∈ V .

• 〈λu, v〉 = λ〈u, v〉 and 〈u, λv〉 = λ〈u, v〉 for all λ ∈ C and v ∈ V .

〈·, ·〉 is called hermitian iff it satisfies in addition the following property:

• 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .

〈·, ·〉 is called positive iff it satisfies in addition the following property:

• 〈v, v〉 ≥ 0 for all v ∈ V .

〈·, ·〉 is called definite iff it satisfies in addition the following property:

• If 〈v, v〉 = 0 then v = 0 for all v ∈ V .

Proposition 4.24 (from Lang). Let V be a complex vector space with a
positive hermitian sesquilinear form 〈·, ·〉 : V ×V → C. If v ∈ V is such that
〈v, v〉 = 0, then 〈v, w〉 = 〈w, v〉 = 0 for all w ∈ V .

Proof. Suppose 〈v, v〉 = 0 for a fixed v ∈ V . Fix some w ∈ V . For any t ∈ R
we have,

0 ≤ 〈tv + w, tv + w〉 = 2t<(〈v, w〉) + 〈w,w〉.

If <(〈v, w〉) 6= 0 we could find t ∈ R such that the right hand side would
be negative, a contradiction. Hence, we can conclude <(〈v, w〉) = 0, for all
w ∈ V . Thus, also 0 = <(〈v, iw〉) = <(−i〈v, w〉) = =(〈v, w〉) for all w ∈ V .
Hence, 〈v, w〉 = 0 and 〈w, v〉 = 〈v, w〉 = 0 for all w ∈ V .

Theorem 4.25 (Schwarz Inequality). Let V be a complex vector space with
a positive hermitian sesquilinear form 〈·, ·〉 : V ×V → C. Then, the following
inequality is satisfied:

|〈v, w〉|2 ≤ 〈v, v〉〈w,w〉 ∀v, w ∈ V.

Proof. If 〈v, v〉 = 0 then also 〈v, w〉 = 0 by Proposition 4.24 and the inequal-
ity holds. Thus, we may assume α := 〈v, v〉 6= 0 and we set β := −〈w, v〉.
By positivity we have,

0 ≤ 〈βv + αw, βv + αw〉.
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Using sesquilinearity and hermiticity on the right hand side this yields,

0 ≤ |〈v, v〉|2〈w,w〉 − 〈v, v〉|〈v, w〉|2.

(Exercise.Show this.) Since 〈v, v〉 6= 0 we can divide by it and arrive at the
required inequality.

Proposition 4.26. Let V be a complex vector space with a positive hermitian
sesquilinear form 〈·, ·〉 : V × V → C. Then, V carries a seminorm given by
‖v‖ :=

√
〈v, v〉. If 〈·, ·〉 is also definite then ‖ · ‖ is a norm.

Proof. Exercise.Hint: To prove the triangle inequality, show that ‖v+w‖2 ≤
(‖v‖+‖w‖)2 can be derived from the Schwarz inequality (Theorem 4.25).

Definition 4.27. A positive definite hermitian sesquilinear form is also
called an inner product or a scalar product. A complex vector space equipped
with such a form is called an inner product space or a pre-Hilbert space. It
is called a Hilbert space iff it is complete with respect to the induced norm.

Proposition 4.28. Consider the map 〈·, ·〉 : L2 × L2 → C given by

〈f, g〉 :=
∫

fg.

Then, 〈·, ·〉 is a positive hermitian sesquilinear form on L2. Moreover, the
seminorm induced by it according to Proposition 4.26 is the ‖ · ‖2-seminorm.
Also, the map 〈·, ·〉 : L2×L2 → C given by 〈[f ], [g]〉 := 〈f, g〉 defines a positive
definite hermitian sesquilinear form on L2. The norm induced by it is the
‖ · ‖2-norm. This makes L2 into a Hilbert space.

Proof. Exercise.

The following Theorem about Hilbert spaces is fundamental, but we do
not include the proof here, as we will only use it one single time.

Theorem 4.29. Let H be a complex Hilbert space and α : H → C a bounded
linear map. Then, there exists a unique element w ∈ H such that

α(v) = 〈v, w〉 ∀v ∈ H.
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5 Measures and integrals on product spaces

5.1 The Product of measures

Definition 5.1. Let S, T be sets and M ⊆ P(S), N ⊆ P(T ) be algebras
of subsets. For (A,B) ∈ M×N we view A×B as a subset of S × T , called
a rectangle. We denote the set of rectangles by M×N ⊆ P(S × T ). Then,
M�N ⊆ P(S × T ) denotes the algebra generated by the set of rectangles.
We also call this the product algebra. Similarly, M�N denotes the σ-algebra
generated by M�N which we call the product σ-algebra.

Proposition 5.2. M�N consists of the finite disjoint union of elements of
M×N .

Proof. Exercise.

Proposition 5.3. Let M′, N ′ be the σ-algebras generated by M and N
respectively. Then,

N �M = N ′ �M′.

Proof. Exercise.

Lemma 5.4. Let (S,M), (T,N ) be measurable spaces. Let U ∈ M � N
and p ∈ S. Set Up := {q ∈ T : (p, q) ∈ U} ⊆ T . Then, Up ∈ N .

Proof. Let A denote the set of subsets V ⊆ S × T such that V ∈ M � N
and Vp ∈ N . Let (A,B) ∈ M×N . Then the rectangle A×B is in A since
(A×B)p = B if p ∈ A and (A×B)p = ∅ otherwise. Thus, all rectangles are in
A. Moreover, A is an algebra: Clearly ∅ ∈ A. Also, if V ∈ A, then ¬V ∈ A
since (¬V )p = ¬(Vp). Similarly, for A,B ∈ A we have (A ∩B)p = Ap ∩ Bp.
So, M�N ⊆ A. But A is even a σ-algebra: Let (An)n∈N be a sequence of
elements of A. Then, (

⋃
n∈NAn)p =

⋃
n∈N(An)p. Thus, M �N ⊆ A. But

A ⊆ M�N by construction.

Lemma 5.5. Let (S,M), (T,N ), (U,A) be measurable spaces and f : S ×
T → U a measurable map, where S×T is equipped with the product σ-algebra
M �N . For p ∈ S denote by fp : T → U the map fp(q) := f(p, q). Then,
fp is measurable for all p ∈ S.

Proof. Let V ∈ A. Then, f−1
p (V ) = (f−1(V ))p, using the notation of

Lemma 5.4. But by that same Lemma, (f−1(V ))p ∈ N .
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Theorem 5.6. Let (S,M, µ) and (T,N , ν) be measure spaces with σ-finite
measures. Then, there exists a unique measure µ�ν on the measurable space
(S × T,M�N ) such that for sets of finite measure A ∈ M and B ∈ N we
have

(µ� ν)(A×B) = µ(A)ν(B).

Proof. At first we assume the measures to be finite. It is clear from Proposi-
tion 5.2 that µ�ν, if it exists, is uniquely determined on M�N by additivity.
A priori it is not clear, however, if µ� ν can be well defined even merely on
M�N , since a given element of M�N can be presented as a disjoint union
of rectangles in different ways. For U ∈ M�N define αU : S → R+

0 by
αU (p) := ν(Up). If U = A × B is a rectangle, we have αU (p) = χA(p)ν(B)
for p ∈ S. In particular, αU is integrable on S and we have

µ(A)ν(B) =

∫
S
αU dµ.

For U a finite disjoint union of rectangles the function αU is simply the
sum of the corresponding functions for the individual rectangles and is thus
integrable on S. In particular, we must have

(µ� ν)(U) =

∫
S
αU dµ,

incidentally showing that µ� ν is well defined on M�N .
We proceed to show that µ � ν is countably additive on M�N . Let

{Un}n∈N be an increasing sequence of subsets of M�N such that U :=⋃
n∈N Un ∈ M�N . Then, {αUn}n∈N is an increasing sequence of integrable

functions on S such that∫
S
αUn dµ ≤

∫
S
αU dµ = (µ� ν)(U) ∀n ∈ N.

Hence we can apply the Monotone Convergence Theorem 3.29. Since αUn

converges pointwise to αU we must have

lim
n→∞

∫
S
αUn dµ =

∫
S
αU dµ.

That is, limn→∞(µ� ν)(Un) = (µ� ν)(U), implying countable additivity. It
is now guaranteed by Hahn’s Theorem 2.35 and Proposition 2.36 that µ� ν
extends to a measure on M�N , and uniquely so.

It remains to consider the case of σ-finite measures. Exercise.
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Exercise 33. Show whether the operation of taking the product measure is
associative.

Exercise 34. Show that the Lebesgue measure on Rn+m is the completion
of the product measure of the Lesbegue measures on Rn and Rm.

In the following we denote the completion of a σ-algebra A with respect
to a given measure by A∗.

Lemma 5.7. Let (S,M, µ) and (T,N , ν) be measure spaces with σ-finite
complete measures. Let Z ∈ (M �N )∗ of measure 0. Then, for almost all
p ∈ S we have ν(Zp) = 0.

Proof. We consider first the case that the measures are finite. For all n ∈ N
define Yn := {p ∈ S : ν(Zp) ≥ 1/n}. Now fix n ∈ N and j ∈ N. Since
the algebra N�N generates the σ-algebra N � M, Theorem 2.35, implies
that there is a sequence of disjoint rectangles {Aj,k × Bj,k}k∈N such that
Z ⊆ Rj and (µ � ν)(Rj) < 1/(nj), where Rj :=

⋃∞
k=1(Aj,k × Bj,k). Define

now Xj := {p ∈ S : ν((Rj)p) ≥ 1/n}. Obviously, Yn ⊆ Xj . Moreover, Xj is
measurable since p 7→ ν((Rj)p) =

∑∞
k=1 χAj,k

(p)ν(Bj,k) is measurable, being
a pointwise limit of measurable functions (Theorem 2.19). We have then,

(µ� ν)(Rj) =

∞∑
k=1

µ(Aj,k)ν(Bj,k) =

∞∑
k=1

∫
S
χAj,k

(p)ν(Bj,k) dµ(p)

=

∫
S

∞∑
k=1

χAj,k
(p)ν(Bj,k) dµ(p) =

∫
S
ν((Rj)p) dµ(p)

≥
∫
Xj

ν((Rj)p) dµ(p) ≥
∫
Xj

1

n
dµ =

1

n
µ(Xj)

(Exercise.Justify the interchange of sum and integral!) Thus we get the
estimate µ(Xj) < 1/j. Repeating the construction for all j ∈ N set X :=⋂∞

j=1Xj . We then have Yn ⊆ X, but µ(X) = 0. Thus, since µ is complete,
Yn is measurable and has measure 0. This in turn implies that Y := {p ∈
S : ν(Zp) > 0} =

⋃∞
n=1 Yn has measure 0 as required. Exercise.Complete

the proof for the σ-finite case!

5.2 Fubini’s Theorem

Lemma 5.8. Let (S,M, µ) and (T,N , ν) be measure spaces with σ-finite
measures. Let A×B ⊆ S×T be a rectangle such that 0 < (µ�ν)(A×B) < ∞.
Then, 0 < µ(A) < ∞ and 0 < ν(B) < ∞.
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Proof. Exercise.

Lemma 5.9. Let (S,M, µ) and (T,N , ν) be measure spaces with σ-finite
complete measures. Let {(λ1, A1, B1), . . . , (λn, An, Bn)} be triples of ele-
ments of K,N ,M respectively and such that 0 ≤ µ(Ai) < ∞ and 0 ≤
ν(Bi) < ∞. Define g : S × T → K by

g(p, q) :=

n∑
k=1

λkχAk
(p)χBk

(q).

Then, g ∈ S(S × T, µ� ν). Moreover, gp ∈ S(T, ν) for all p ∈ S and

p 7→
∫
T
gp dν

defines a function in S(S, µ) satisfying∫
S

(∫
T
gp dν

)
dµ(p) =

∫
S×T

g d(µ� ν).

Proof. Exercise.

Theorem 5.10 (Fubini’s Theorem, Part 1). Let (S,M, µ) and (T,N , ν) be
measure spaces with σ-finite complete measures and f ∈ L1(S × T, (M �
N )∗, µ� ν). Then, fp ∈ L1(T,N , ν) for almost all p ∈ S and

p 7→
∫
T
fp dν

defines almost everywhere a function in L1(S,M, µ) satisfying∫
S

(∫
T
fp dν

)
dµ(p) =

∫
S×T

f d(µ� ν).

Proof. By Proposition 3.23 there is a sequence {fn}n∈N of integrable simple
functions, measurable with respect to M�N , that converges to f in the
‖ · ‖1-seminorm. Each function fn can be written as a linear combination
of characteristic functions on elements of M�N with finite measure. By
modifying fn if necessary, but without affecting convergence of the sequence
we can also arrange that the supports of the characteristic functions all
have non-zero measure. Due to Theorem 3.24, by replacing {fn}n∈N with a
subsequence if necessary, we can ensure moreover pointwise convergence to
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f , except on a set N of measure zero. Taking into account Lemma 5.8 we
notice that the functions fn satisfy the conditions of Lemma 5.9.

By Lemma 5.7, there exists a subset X ⊆ S with measure 0 such that
ν(Np) = 0 if p /∈ X. Fix for the moment p ∈ S \ X. Then, {(fn)p}n∈N
converges to fp pointwise outside Np. Moreover, since the (fn)p are mea-
surable with respect to (T,N ) by construction, so is fp outside of Np due
to Theorem 2.19. But, Np has measure zero and (T,N , ν) is complete by
assumption, so fp is measurable everywhere.

Since {fn}n∈N is Cauchy, we can restrict to a subsequence such that

‖fl − fk‖1 < 2−2k ∀k ∈ N,∀l ≥ k.

By applying Lemma 5.9 to |fl − fp|, we have for all k ∈ N and l ≥ k,∫
S
‖(fl)p − (fk)p‖1,ν dµ(p) =

∫
S

(∫
T
|(fl)p − (fk)p|dν

)
dµ(p)

=

∫
S

(∫
T
|fl − fk|p dν

)
dµ(p) =

∫
S×T

|fl − fk|d(µ�ν) = ‖fl−fk‖1 < 2−2k.

Now for k ∈ N set Yk ⊆ S to

Yk :=
{
p ∈ S : ‖(fl)p − (fk)p‖1,ν ≥ 2−k

}
.

Then, for all k ∈ N,

2−kµ(Yk) ≤
∫
Yk

‖(fk+1)p − (fk)p‖1,νdµ(p)

≤
∫
S
‖(fk+1)p − (fk)p‖1,νdµ(p) ≤ 2−2k.

This implies, µ(Yk) ≤ 2−k for all k ∈ N. Define now Zj :=
⋃∞

k=j Yk for all
j ∈ N. Then, µ(Zj) ≤ 21−j for all j ∈ N.

Fix j ∈ N and let p ∈ S \ Zj . Then, for k ≥ j we have

‖(fk+1)p − (fk)p‖1,ν < 2−k.

This implies for k ≥ j and l ≥ k,

‖(fl)p − (fk)p‖1,ν < 21−k.

In particular, {(fn)p}n∈N is a Cauchy sequence with respect to the ‖ · ‖1,ν-
seminorm. Since j was arbitrary, this remains true for p ∈ S \ Z, where
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Z :=
⋂∞

j=1 Zj . Note that µ(Z) = 0. Now let p ∈ S \ (X ∪ Z). Since
{(fn)p}n∈N converges to fp pointwise almost everywhere, and fp is measur-
able, Proposition 3.25 then implies that fp is integrable and that {(fn)p}n∈N
converges to fp in the ‖ · ‖1,ν-seminorm.

Now define
hn : p 7→

∫
T
(fn)p dν

By Lemma 5.9 this is an integrable simple map and by the previous argu-
ments it converges pointwise outside of X ∪ Z to

h : p 7→
∫
T
(f)p dν.

Thus, h is measurable in S \ (X ∪Z) by Theorem 2.19 and can be extended
to a measurable function on all of S, for example by setting h(p) = 0 if
p ∈ X ∪ Z. On the other hand, {hn}n∈N is a Cauchy sequence with respect
to the ‖ · ‖1,µ-seminorm since, for all l, k ∈ N,

‖hl − hk‖1,µ =

∫
S
|hl − hk|dµ =

∫
S

∣∣∣∣∫
T
((fl)p − (fk)p) dν

∣∣∣∣ dµ(p)
≤
∫
S

(∫
T
|(fl)p − (fk)p|dν

)
dµ(p) = ‖fl − fk‖1

and {fn}n∈N is Cauchy. Thus, by Proposition 3.25, h is integrable and
{hn}n∈N converges to h in the ‖ · ‖1,µ-seminorm. Then,∫

S×T
f d(µ� ν) = lim

n→∞

∫
S×T

fn d(µ� ν) = lim
n→∞

∫
S

(∫
T
(fn)p dν

)
dµ(p)

= lim
n→∞

∫
S
hn dµ =

∫
S
h dµ =

∫
S

(∫
T
fp dν

)
dµ(p).

Lemma 5.11. Let (S,M, µ) and (T,N , ν) be measure spaces with σ-finite
complete measures and f : S×T → K measurable with respect to (M�N )∗.
Then, for almost all p ∈ S, fp is measurable with respect to N .

Proof. By Proposition 2.30, there is a function g : S × T → K that is
measurable with respect to M�N and such that g coincides with f at least
outside a set N ∈ M � N of measure 0. By Lemma 5.5, gp is measurable
for all p ∈ S. By Lemma 5.7, ν(Np) = 0 for all p ∈ S \ Y , where Y ∈ N is
of measure 0. Let p ∈ S \ Y , then gp coincides with fp almost everywhere
and since (T,N , ν) is complete fp must be measurable.
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Theorem 5.12 (Fubini’s Theorem, Part 2). Let (S,M, µ) and (T,N , ν)
be measure spaces with σ-finite complete measures and f : S × T → K be
measurable with respect to (M � N )∗. Suppose that fp ∈ L1(T,N , ν) for
almost all p ∈ S. Moreover suppose that the function

p 7→
∫
T
|fp|dν

defined almost everywhere in this way is in L1(S,M, µ). Then, f ∈ L1(S ×
T, (N �M)∗, µ� ν).

Proof. Denote by X ∈ M a set of measure 0 such that fp ∈ L1(T,N , ν) for
p ∈ S \X. By Theorem 2.23 there exists a an increasing sequence {fn}n∈N of
simple functions fn : S × T → R+

0 with respect to (M�N )∗ that converges
pointwise to |f |. Moreover, because of σ-finiteness the fn can be chosen to
have finite support. (Exercise.Explain!) In particular, this implies that
each fn is integrable. Applying Theorem 5.10 to fn yields a set Nn ∈ M
of measure 0 such that (fn)p ∈ L1(T,N , ν) for all p ∈ S \Nn. Moreover, it
implies that hn : S → R+

0 defined by hn(p) :=
∫
T (fn)p dν for p ∈ S \Nn and

hn(p) = 0 otherwise, is integrable. Also it implies,∫
S
hn dµ =

∫
S×T

fn d(µ� ν)

Let N :=
⋃

n∈NNn. This has measure 0. Note that since fn ≤ f for all
n ∈ N we also have hn(p) ≤

∫
T |fp|dν for all p ∈ S \ {N ∪ X}. Putting

things together we get for all n ∈ N∫
S×T

fn d(µ� ν) =

∫
S
hn dµ ≤

∫
S

(∫
T
fp dν

)
dµ

Thus, by the Monotone Convergence Theorem 3.26, {fn}n∈N converges point-
wise almost everywhere to an integrable function. But {fn}n∈N converges
pointwise to |f |, which is measurable, so |f | must be integrable. Then, by
Proposition 3.30, f is integrable.
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6 Relations between measures

Proposition 6.1. Let X be a measured space with σ-algebra M. Let µ1, µ2

be positive measures on M. Then, µ := µ1 + µ2 is a positive measure on
(X,M). Moreover, L1(µ) = L1(µ1) ∩ L1(µ2) and∫

A
f dµ =

∫
A
f dµ1 +

∫
A
f dµ2 ∀f ∈ L1(µ), A ∈ M.

Proof. Exercise.

Definition 6.2 (Complex Measure). Let X be a measured space with σ-
algebra M. Then, a map µ : M → C is called a complex measure iff it
is countably additive, i.e., satisfies the following property: If {An}n∈N is a
sequence of elements of M such that An ∩Am = ∅ if n 6= m, then

µ

(⋃
n∈N

An

)
=

∞∑
n=1

µ(An).

Remark 6.3. 1. The above definition implies µ(∅) = 0. 2. The convergence
of the series in the definition is absolute since its limit must be invariant
under reorderings. 3. In contrast to positive measures, a complex measure is
always finite.

Exercise 35. Show that the complex measures on a given σ-algebra form a
complex vector space.

Definition 6.4. Let X be a measured space with σ-algebra M. Let µ be a
positive measure on (X,M) and ν a positive or complex measure on (X,M).
We say that ν is absolutely continuous with respect to µ, denoted ν � µ iff
µ(A) = 0 implies ν(A) = 0 for all A ∈ M.

Definition 6.5. Let X be a measured space with σ-algebra M. Let µ be a
positive or complex measure on (X,M). We say that µ is concentrated on
A ∈ M iff µ(B) = µ(B ∩A) for all B ∈ M.

Definition 6.6. Let X be a measured space with σ-algebra M. Let µ, ν be
positive or complex measures on (X,M). We say that µ and ν are mutually
singular, denoted µ ⊥ ν, iff there exist disjoint sets A,B ∈ M such that µ
is concentrated on A and ν is concentrated on B.

Proposition 6.7. Let µ be a positive measure and ν, ν1, ν2 be positive or
complex measures.
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1. If µ is concentrated on A and ν � µ, then ν is concentrated on A.

2. If ν1 � µ and ν2 ⊥ µ, then ν1 ⊥ ν2.

3. If ν � µ and ν ⊥ µ, then ν = 0.

4. If ν1 � µ and ν2 � µ, then ν1 + ν2 � µ.

5. If ν1 ⊥ ν and ν2 ⊥ ν, then ν1 + ν2 ⊥ ν.

Proof. Exercise.

Theorem 6.8. Let X be a measure space with σ-algebra M and σ-finite
measure µ. Let ν be a finite measure on (X,M).

1. (Lebesgue) Then, there exists a unique decomposition

ν = νa + νs,

into finite measures such that νa � µ and νs ⊥ µ.

2. (Radon-Nikodym) There exists a unique [h] ∈ L1(µ) such that for all
A ∈ M,

νa(A) =

∫
A
hdµ.

Proof. We first show the uniqueness of the decomposition ν = νa + νs in
(1.). Suppose there is another decomposition ν = ν ′a + ν ′s. Note that all
the measures involved here are finite and thus are also complex measures.
In particular, we obtain the following equality of complex measures, νa −
ν ′a = ν ′s − νs. However, by Proposition 6.7 the left hand side is absolutely
continuous with respect to µ while the right hand side is singular with respect
to µ. Again by Proposition 6.7, the equality of both sides implies that they
must be zero, i.e., ν ′a = νa and ν ′s = νs.

To show the uniqueness of [h] ∈ L1(µ) in (2.) we note that given another
element [h′] ∈ L1(µ) with the same property, we would get

∫
A(h−h′) dµ = 0

for all measurable sets A. By Proposition 3.21 then 0 = [h−h′] = [h]− [h′] ∈
L1(µ).

We proceed to construct the decomposition ν = νa + νs and the element
[h] ∈ L1(µ). By Lemma 4.22, there is a function w ∈ L1(µ) with 0 < w < 1.
This yields the finite measure µw, given by

µw(A) :=

∫
A
w dµ ∀A ∈ M.
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(Recall the last part of Exercise 30.) Define the finite measure ϕ := ν +
µw. Note that L1(ϕ) ⊆ L1(ν) and L1(ϕ) ⊆ L1(µw) and we have (using
Proposition 6.1),∫

X
f dϕ =

∫
X
f dν +

∫
X
fw dµ ∀f ∈ L1(ϕ). (1)

In particular, we may deduce∣∣∣∣∫
X
fdν

∣∣∣∣ ≤ ‖f‖ν,1 ≤ ‖f‖ϕ,1 ∀f ∈ L1(ϕ).

By Proposition 4.21 we have L2(ϕ) ⊆ L1(ϕ) and even

‖f‖ϕ,1 ≤ ‖f‖ϕ,2 (ϕ(X))1/2 ∀f ∈ L2(ϕ).

Combining the inequalities we find∣∣∣∣∫
X
fdν

∣∣∣∣ ≤ ‖f‖ϕ,2 (ϕ(X))1/2 ∀f ∈ L2(ϕ).

This means that the linear map α : L2(ϕ) → K ⊆ C given by [f ] 7→
∫
X [f ]dν

is bounded. Since L2(ϕ) is a Hilbert space, Theorem 4.29 implies that there
is an element g ∈ L2(ϕ) such that α([f ]) = 〈[f ], [g]〉 for all f ∈ L2(ϕ). This
implies, ∫

X
fdν =

∫
X
fg dϕ ∀f ∈ L2(ϕ) (2)

By inserting characteristic functions for f we obtain

ν(A) =

∫
A
g dϕ ∀A ∈ M.

On the other hand we have ν(A) ≤ ϕ(A) for all measurable sets A and hence,

0 ≤ 1

ϕ(A)

∫
A
g dϕ =

ν(A)

ϕ(A)
≤ 1 ∀A ∈ M : ϕ(A) > 0.

We can now apply the Averaging Theorem (Theorem 3.20) to conclude that
0 ≤ g ≤ 1 almost everywhere. We modify g on a set of measure zero if
necessary so that 0 ≤ g ≤ 1 everywhere. In particular, if f ∈ L2(ϕ) then
(1− g)f ∈ L2(ϕ) and gf ∈ L2(ϕ). Combining (1) and (2) we find∫

X
(1− g)f dν =

∫
X
fgw dµ ∀f ∈ L2(ϕ).
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Set Za := {x ∈ X : g(x) < 1} and Zs := {x ∈ X : g(x) = 1} and define the
measures νa(A) := ν(A∩Za) and νs := ν(A∩Zs) for all A ∈ M. Since X is
the disjoint union of Za and Zs we obviously have ν = νa + νs. Taking f to
be the characteristic function of Zs we find that

∫
Zs

w dµ = 0. Since 0 < w,
we conclude that µ(Zs) = 0. In particular, this implies that µ is supported
on Za, while νs is supported on Zs, so νs ⊥ µ.

Define now the sequence {fn}n∈N of functions fn :=
∑n

k=1 g
k−1. Since

g is bounded, fn is bounded. Multiplying with characteristic functions we
find for measurable sets A,∫

A
(1− gn) dν =

∫
A
(1− g)fn dν =

∫
A
fngw dµ.

Note that {1−gn}n∈N increases monotonically and converges pointwise to the
characteristic function of Za. Thus, by the Monotone Convergence Theorem
(Theorem 3.26) or by the Dominated Convergence Theorem (Theorem 3.29)
the left hand side converges to ν(A ∩ Za) = νa(A).

The sequence {fngw}n∈N is also increasing monotonically with its µ-
integrals over A bounded by νa(A). So the Monotone Convergence Theorem
(Theorem 3.26) applies and the pointwise limit is a µ-integrable function h.
We get

νa(A) =

∫
A
h dµ,

showing existence in (2.) and also νa � µ, thus completing the existence
proof for (1.).

Remark 6.9. The function h appearing in the above Theorem is also called
the Radon-Nikodym derivative, denoted as h = dνa/dµ.
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