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1 Topological and metric spaces

1.1 Basic Definitions

Definition 1.1 (Topology). Let S be a set. A subset T of the set PB(S) of
subsets of S is called a topology iff it has the following properties:

e)eTand SeT.
o Let {Ui}icr be a family of elements in 7. Then | J;c; U; € T.
e Let U VeT. ThenUNV eT.

A set equipped with a topology is called a topological space. The elements of
T are called the open sets in S. A complement of an open set in S is called
a closed set.

Definition 1.2. Let S be a topological space and x € S. Then a subset
U C S is called a neighborhood of x iff it contains an open set which in turn
contains . We denote the set of neighborhoods of x by N,.

Definition 1.3. Let S be a topological space and U a subset. The closure
U of U is the smallest closed set containing U. The interior U of U is the
largest open set contained in U. U is called dense in S iff U = S.

Definition 1.4 (base). Let 7 be a topology. A subset B of T is called a
base of T iff the elements of T are precisely the unions of elements of 5. It
is called a subbase iff the elements of T are precisely the finite intersections
of unions of elements of B.

Proposition 1.5. Let S be a set and B a subset of P(S). B is the base of
a topology on S iff it satisfies all of the following properties:

e ) eB.
o [For every x € S there is a set U € B such that x € U.

o Let UV € B. Then there exits a family {Wy}taca of elements of B
such that U NV = Jyen Wa-

Proof. Exercise. O

Definition 1.6. Let S be a topological space and p a point in S. We call a
family {Uq}aeca of open neighborhoods of p a neighborhood base at p iff for
any neighborhood V' of p there exists a € A such that U, C V.
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Definition 1.7 (Continuity). Let S, T be topological spaces. Amap f : S —
T is called continuous at p € S iff f=H(Np(,)) CNp. [ is called continuous
iff it is continuous at every p € S. We denote the space of continuous maps
from S to T by C(S,T).

Proposition 1.8. Let S,T be topological spaces and f : S — T a map.
Then, f is continuous iff for every open set U € T the preimage f~1(U) in
S is open.

Proof. Exercise. O

Proposition 1.9. Let S,T,U be topological spaces, f € C(S,T) and g €
C(T,U). Then, the composition go f : S — U is continuous.

Proof. Immediate. O

Definition 1.10. Let S, T be topological spaces. A bijection f : S — T
is called a homeomorphism iff f and f~! are both continuous. If such a
homeomorphism exists S and T are called homeomorphic.

Definition 1.11. Let 77, 72 be topologies on the set S. Then, 77 is called
finer than 75 and 73 is called coarser than 7Ty iff all open sets of 75 are also
open sets of 77.

Definition 1.12 (Induced Topology). Let S be a topological space and U
a subset. Consider the topology given on U by the intersection of each open
set on S with U. This is called the induced topology on U.

Definition 1.13 (Product Topology). Let S be the cartesian product S =
[Iocr Sa of a family of topological spaces. Consider subsets of S of the form
[Ioer Ua where finitely many U, are open sets in S, and the others coincide
with the whole space U, = S,. These subsets form the base of a topology
on S which is called the product topology.

Exercise 1. Show that alternatively, the product topology can be charac-
terized as the coarsest topology on S = ], c;Sa such that all projections
S — S, are continuous.

Proposition 1.14. Let S, T, X be topological spaces and f € C(S x T, X),
where S X T carries the product topology. Then the map f. : T — X defined
by fz(y) = f(z,y) is continuous for every x € S.
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Proof. Fix x € S. Let U be an open set in X. We want to show that
W = f71(U) is open. We do this by finding for any y € W an open
neighborhood of y contained in W. If W is empty we are done, hence assume
that this is not so. Pick y € W. Then (z,y) € f~1(U) with f~*(U) open
by continuity of f. Since S x T carries the product topology there must be
open sets V;, C S and V, C T with x € V,,, y € V, and V x V;, C f~YU).
But clearly V;, € W and we are done. O

Definition 1.15 (Quotient Topology). Let S be a topological space and ~
an equivalence relation on S. Then, the quotient topology on S/~ is the
finest topology such that the quotient map S — S/~ is continuous.

1.2 Some properties of topological spaces

In a topological space it is useful if two distinct points can be distinguished
by the topology. A strong form of this distinguishability is the Hausdorff

property.

Definition 1.16 (Hausdorff). Let S be a topological space. Assume that
given any two distinct points z,y € S we can find open sets U,V C S such
that z € U and y € V and UNV = (). Then, S is said to have the Hausdorff
property. We also say that S is a Hausdorff space.

Definition 1.17. Let S be a topological space. S is called first-countable
iff there exists a countable neighborhood base at each point of S. S is called
second-countable iff the topology of S admits a countable base.

Definition 1.18 (open cover). Let S be a topological space and U C S
a subset. A family of open sets {Uy}aca is called an open cover of U iff
U - UaEA Ua'

Proposition 1.19. Let S be a second-countable topological space and U C S
a subset. Then, every open cover of U contains a countable subcover.

Proof. Exercise. O

Definition 1.20 (compact). Let S be a topological space and U C S a sub-
set. U is called compact iff every open cover of U contains a finite subcover.

Proposition 1.21. A closed subset of a compact space is compact. A com-
pact subset of a Hausdorff space is closed.

Proof. Exercise. O
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Proposition 1.22. The image of a compact set under a continuous map is
compact.

Proof. Exercise. O

Definition 1.23. Let S be a topological space. S is called locally compact
iff every point of S possesses a compact neighborhood.

Exercise 2 (One-point compactification). Let S be a locally compact Haus-
dorff space. Let S := S U {oo} to be the set S with an extra element oo
adjoint. Define a subset U of S to be open iff either U is an open subset of
S or U is the complement of a compact subset of S. Show that this makes
S into a compact Hausdorff space.

1.3 Sequences and convergence

Definition 1.24 (Convergence of sequences). Let © := {x,}nen be a se-
quence of points in a topological space S. We say that x has an accumulation
point (or limit point) p iff for every neighborhood U of p we have xp € U
for infinitely many £ € N. We say that « converges to a point p iff for any
neighborhood U of p there is a number n € N such that for all £k > n :
zp €U.

Proposition 1.25. Let S,T be topological spaces and f : S — T. If f
is continuous, then for any p € S and sequence {xy}nen converging to p,
the sequence f{(xn)}nen in T converges to f(p). Conversely, if S is first
countable and for any p € S and sequence {Ty}nen converging to p, the
sequence f{(xn)}nen in T converges to f(p), then f is continuous.

Proof. Exercise. O

Proposition 1.26. Let S be Hausdorff space and {xy}nen a sequence in S
which converges to a point p € S. Then, {x,}nen does not converge to any
other point in S.

Proof. Exercise. O

Definition 1.27. Let S be a topological space and U C S a subset. Consider
the set By of sequences of elements of U. Then the set U’ consisting of the

points to which some element of By converges is called the sequential closure
of U.
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Proposition 1.28. Let S be a topological space and U C S a subset. Let x
be a sequence of points in U which has an accumulation point p € S. Then,
peU.

Proof. Suppose p ¢ U. Since U is closed S\ U is an open neighborhood of
p. But S\ U does not contain any point of x, so p cannot be accumulation
point of z. This is a contradiction. ]

Corollary 1.29. Let S be a topological space and U a subset. Then, U C
U’ CU.

Proof. Immediate. O

Proposition 1.30. Let S be a first-countable topological space and U a sub-
set. Then, U =TU.

Proof. Exercise. O

Definition 1.31. Let S be a topological space and U C S a subset. U is
said to be limit point compact iff every sequence in S has an accumulation
point (limit point) in U. U is called sequentially compact iff every sequence
of elements of U contains a subsequence converging to a point in U.

Proposition 1.32. Let S be a first-countable topological space and x =
{Zn}nen a sequence in S with accumulation point p. Then, x has a subse-
quence that converges to p.

Proof. By first-countability choose a countable neighborhood base {U,, }nen
at p. Now consider the family {W),},en of open neighborhoods W, :=
Mi—y Uk at p. It is easy to see that this is again a countable neighborhood
base at p. Moreover, it has the property that W,, C W,, if n > m. Now,
Choose n1 € N such that z,, € Wj. Recursively, choose njy; > ny such
that @, , € Wiyq. This is possible since Wiy contains infinitely many
points of x. Let V be a neighborhood of p. There exists some k € N such
that Uy C V. By construction, then W,, C W; C Uy for all m > k and
hence x,,, € V for all m > k. Thus, the subsequence {x,,, }men converges
to p. ]

Proposition 1.33. Sequential compactness implies limit point compactness.
In a first-countable space the converse is also true.

Proof. Exercise. O

Proposition 1.34. A compact set is limit point compact.
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Proof. Consider a sequence x in a compact set S. Suppose x does not have
an accumulation point. Then, for each point p € S we can choose an open
neighborhood U, which contains only finitely many points of x. However, by
compactness, S is covered by finitely many of the sets U,. But their union
can only contain a finite number of points of x, a contradiction. O

1.4 Metric and pseudometric spaces

Definition 1.35. Let S be aset and d : S x § — RS’ a map with the
following properties:

o d(z,y) =d(y,z) Vz,y € S. (symmetry)
e d(z,z) <d(xz,y)+d(y,z) Va,y,z € S. (triangle inequality)
e d(x,x)=0 VxeSb.

Then d is called a pseudometric on S. S is also called a pseudometric space.
Suppose d also satisfies

e dlz,y) =0 = x =y Va,y € S. (definiteness)
Then d is called a metric on S and S is called a metric space.

Definition 1.36. Let S be a pseudometric space, z € S and r > 0. Then
the set By(z) := {y € S : d(x,y) < r} is called the open ball of radius r
centered around z in S. The set B,(z) := {y € S : d(z,y) < r} is called the
closed ball of radius r centered around z in S.

Proposition 1.37. Let S be a pseudometric space. Then, the open balls
i S together with the empty set form the basis of a topology on S. This
topology is first-countable and such that closed balls are closed. Moreover,
the topology is Hausdorff iff S is metric.

Proof. Exercise. O

Definition 1.38. A topological space is called (pseudo)metrizable iff there
exists a (pseudo)metric such that the open balls given by the (pseudo)metric
are a basis of its topology.

Proposition 1.39. In a pseudometric space any open ball can be obtained as
the countable union of closed balls. Stmilarly, any closed ball can be obtained
as the countable intersection of open balls.

Proof. Exercise. O
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Proposition 1.40. Let S be a set equipped with two pseudometrics d' and
d?. Then, the topology generated by d? is finer than the topology generated by
d' iff for allz € S and r1 > 0 there exists ro > 0 such that BZ (z) C B} (z).
In particular, d* and d*> generate the same topology iff the condition holds
both ways.

Proof. Exercise. O

Proposition 1.41 (epsilon-delta criterion). Let S, T be pseudometric spaces
and f: S = T a map. Then, [ is continuous at x € S iff for every e > 0
there exists § > 0 such that f(Bs(z)) C Be(f(x)).

Proof. Exercise. O

1.5 Elementary properties of pseudometric spaces

Proposition 1.42. Let S be a pseudometric space and x = {Tp}tnen @
sequence in S. Then x converges to p € S iff for any € > 0 there exists an
no € N such that d(zy,p) < € for all n > ng.

Proof. ITmmediate. O

Definition 1.43. Let S be a pseudometric space and x := {zy}nen a se-
quence in S. Then z is called a Cauchy sequence iff for all € > 0 there exists
an ng € N such that d(zy, z,,) < € for all n,m > ny.

Exercise 3. Give an example of a set S, a sequence z in S and two metrics
d' and d? on S that generate the same topology, but such that x is Cauchy
with respect to d', but not with respect to d>.

Proposition 1.44. Any converging sequence in a pseudometric space is a
Cauchy sequence.

Proof. Exercise. O

Proposition 1.45. Suppose x is a Cauchy sequence in a pseudometric space.
If p is accumulation point of x then x converges to p.

Proof. Exercise. O

Definition 1.46. Let S be a pseudometric space and U C S a subset. If
every Cauchy sequence in U converges to a point in U, then U is called
complete.
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Proposition 1.47. A complete subset of a metric space is closed. A closed
subset of a complete pseudometric space is complete.

Proof. Exercise. O

Exercise 4. Give an example of a complete subset of a pseudometric space
that is not closed.

Definition 1.48 (Totally boundedness). Let S be a pseudometric space. A
subset U C S is called totally bounded iff for any r > 0 the set U admits a
cover by finitely many open balls of radius 7.

Proposition 1.49. A subset of a pseudometric space is compact iff it is
complete and totally bounded.

Proof. We first show that compactness implies totally boundedness and com-
pleteness. Let U be a compact subset. Then, for > 0 cover U by open balls
of radius r centered at every point of U. Since U is compact, finitely many
balls will cover it. Hence, U is totally bounded. Now, consider a Cauchy
sequence x in U. Since U is compact x must have an accumulation point
p € U (Proposition [=34) and hence (Proposition [Z43) converge to p. Thus,
U is complete.

We proceed to show that completeness together with totally bounded-
ness imply compactness. Let U be a complete and totally bounded subset.
Assume U is not compact and choose a covering {Uy}aca of U that does
not admit a finite subcover. On the other hand, U is totally bounded and
admits a covering by finitely many open balls of radius 1/2. Hence, there
must be at least one such ball By such that C7 := By N U is not covered
by finitely many U,. Choose a point z; in C7. Observe that C] itself is
totally bounded. Inductively, cover C), by finitely many open balls of radius
2-(n+1)  For at least one of those, call it By+1, Cht1 := Bpy1 NGy, is not
covered by finitely many U,. Choose a point x,41 in Cpy1. This process
yields a Cauchy sequence x := {zj}ren. Since U is complete the sequence
converges to a point p € U. There must be a € A such that p € U,. Since
U, is open there exists r > 0 such that B(p,r) C U,. This implies, C,, C U,
for all n € N such that 27"*! < r. However, this is a contradiction to the
C,, not being finitely covered. Hence, U must be compact. ]

Proposition 1.50. The notions of compactness, limit point compactness
and sequential compactness are equivalent in a pseudometric space.

Proof. Exercise. O



Robert Oeckl - RA NOTES — 15/11,/2012 11

Proposition 1.51. A totally bounded pseudometric space is second-countable.

Proof. Exercise. O

Proposition 1.52. Let S be equipped with a pseudometric d. Then p ~
q < d(p,q) =0 for p,q € S defines an equivalence relation on S. The
prescription J([p], lq]) := d(p,q) for p,q € S is well defined and yields a
metric d on the quotient space S/~. The topology induced by this metric on
S/~ is the quotient topology with respect to that induced by d on S. Moreover,
S/~ is complete iff S is complete.

Proof. Exercise. O

1.6 Completion of metric spaces

Often it is desirable to work with a complete metric space when one is only
given a non-complete metric space. To this end one can construct the com-
pletion of a metric space. This is detailed in the following exercise.

Exercise 5. Let S be a metric space.

o Let x := {zp}nen and y := {yn }nen be Cauchy sequences in S. Show
that the limit lim, oo d(xy, yn) exists.

e Let T' be the set of Cauchy sequences in S. Define the function d:
TxT — R(T by d(z,y) = lim, 00 d(n,yn). Show that d defines a
pseudometric on T'.

e Show that T is complete.

e Define S as the metric quotient 7'/~ as in Proposition IZ52. Then, S
is complete.

e Show that there is a natural isometric embedding (i.e., a map that
preserves the metric) ig : S — S. Furthermore, show that this is a
bijection iff S is complete.

Definition 1.53. The metric space S constructed above is called the com-
pletion of the metric space S.

Proposition 1.54 (Universal property of completion). Let S be a metric
space, T a complete metric space and f : S — T an isometric map. Then,
there is a unique isometric map f : S — T such that f = foig. Furthermore,
the closure of f(S) in T is equal to f(S).

Proof. Exercise. O
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1.7 Norms and seminorms

In the following K will denote a field which can be either R or C.

Definition 1.55. Let V be a vector space over K. Then a map V — Rg :
x — ||z|| is called a seminorm iff it satisfies the following properties:

L |[Az|| = |A|||z]| for all A e K,z € V.
2. Forall z,y € V : [z +y|| < [|z]| + [|y]|. (triangle inequality)

A seminorm is called a norm iff it satisfies in addition the following property:
3. |zl =0 = xz=0.

Proposition 1.56. Let V' be a seminormed vector space over K. Then,
d(v,w) := ||[v —w|| defines a pseudometric on V. Moreover, d is a metric iff
the seminorm is a norm.

Proof. Exercise. O

Remark 1.57. Since a seminormed space is a pseudometric space all the
concepts developed for pseudometric spaces apply. In particular the notions
of convergence, Cauchy sequence and completeness apply to seminormed
spaces.

Exercise 6. Show that the operations of addition and multiplication are
continuous in a seminormed space.

Definition 1.58. A complete normed vector space is called a Banach space.

Exercise 7. Show that R™ with norm given by [|z|| = /z{+ -+ 22 is a
Banach space. Show that |z|| = |z1]| 4+ - - + |z,| is another norm that also
makes R" into a Banach space.

Exercise 8. Let S be a set and Fy,(.9, K) the set of bounded maps S — K.
1. F,(S,K) is a vector space over K.

2. The supremum norm on it is a norm defined by

[1f llsup := sup [ f(p)]-
peS

3. Fp(5,K) with the supremum norm is a Banach space.
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Exercise 9. Let n € N and S be a set with n elements. Show that F,(S,R)
is isomorphic to R™ as a vector space and that the supremum norm yields in
this way yet another norm on R", different from the ones of Exercise [@, that
also make it into a Banach space.

Exercise 10. Let S be a topological space and Cy, (.5, K) the set of bounded
continuous maps S — K.

1. Cp(S,K) is a vector space over K.
2. Cp(S5,K) with the supremum norm is a Banach space.

Proposition 1.59. Let V' be a vector space with a seminorm ||-||v. Consider
the subset A := {v € V : ||v||y = 0}. Then, A is a vector subspace. Moreover
v~ w <= v—w € A defines an equivalence relation and W :=V/ ~ is a

vector space. The seminorm ||- ||y induces a norm on W via ||[v]||w = ||v|v
forv e V. Also, V is complete with respect to the seminorm || - ||y iff W is
complete with respect to the norm || - ||w.

Proof. Exercise. O

Proposition 1.60. Let V., W be seminormed vector spaces. Then, a linear
map oV — W is continuous iff there exists a constant ¢ > 0 such that

la()|lw < cllvlly Yo eV.

Proof. Exercise. O



14

Robert Oeckl - RA NOTES — 15/11,/2012



Robert Oeckl - RA NOTES — 15/11,/2012 15

2 Measures

The basic idea behind integration theory via measures may be roughly de-
scribed as follows: Given a space (set) we want to associate "sizes" to
"pieces" of the space. To do this we first have to make precise what we
mean by a "piece", i.e., what subsets we admit as "pieces". This is the
purpose of the concept of a g-algebra and a measurable space. Given that
we know what a piece is, we want to assign a number to it, its "size", in
such a way that sizes add up appropriately when we join pieces. This is pro-
vided by the concept of a measure. Then, we can declare the integral for the
characteristic function on a piece to be the size of the piece. Approximating
more arbitrary functions by linear combinations of characteristic functions
for pieces then yields a general notion of integral.

2.1 o-Algebras and Measurable Spaces

Definition 2.1 (Boolean Algebra). Let A be a set equipped with three
operations: A: AxA— A V:AxA— Aand -: A— A and two special
elements 0,1 € A. Suppose these satisfy the following properties:

e (xNyYANz=xzAN(yANz)and (xVy)Vz=2V(yVz) Vryze A
(associativity)

e xANy=yAzandzVy=yVaze Vr,y€e A (commutativity)

o zA(yVz) = (zAy)V(zAz) and zV(yAz) = (xVy)A(xVz) Vz,y,z € A.
(distributivity)

e xA(zVy)=zandzV (xAy)=x Vz,y€ A. (absorption)
e xA-xz=0andxzV-xz=1 Vre A (complement)
Then, A is called a Boolean algebra.

Proposition 2.2. Let A be a Boolean algebra. Then, the following properties
hold:

sANx=xz,zVr=z, xAN0=0,zAN1l=z, 2V0=x, zV1=1 VzxeA
Proof. Exercise. O

Exercise 11. Show that the set with two elements 0,1 forms a Boolean
algebra. This is important in logic, where 0 stands for "false" and 1 for
"true".
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Exercise 12. Let S be a set. Show that the set (.5) of subsets of S forms
a Boolean algebra, where V = U is the union, A = N is the intersection and
= is the complement of sets.

Definition 2.3 (Algebra of sets). Let S be a set. A subset M of the set
PB(S) of subsets of S is called an algebra of sets iff it is a Boolean subalgebra

of P(9).

Proposition 2.4. Let S be a set and M a subset of the set B(S) of subsets
of S. Then M is an algebra of sets iff it contains the empty set and is closed
under complements, finite unions, and finite intersections.

Proof. Immediate. O

Exercise 13. Show that the above proposition remains true if we erase
either the requirement for closedness under finite unions or the requirement
for closedness under finite intersections.

Definition 2.5. Let S be a set and M an algebra of subsets of S. We call
M a o-algebra of sets iff it is closed under countable unions and countable
intersections.

Exercise 14. Show that the above definition remains unchanged if we re-
move either the requirement for closedness under countable unions or closed-
ness under countable intersections.

Definition 2.6. Let S be a set and B a subset of the set B(.S) of subsets of
S. Then, the smallest o-algebra M on S containing B is called the o-algebra
generated by B.

Exercise 15. Justify the above definition by showing that the smallest o-
algebra in the sense of the definition always exists.

Definition 2.7. Let S be a set and B a subset of (S). Then, B is called
monotone iff it satisfies the following properties:

o Let {A,}nen be a sequence of elements of B such that A, C A,41.
Then, [, ey An € B.

o Let {A,}nhen be a sequence of elements of B such that 4, D Ap,41.

Then, ey An € B.

Proposition 2.8. 1. A o-algebra is monotone. 2. An algebra that is mono-
tone is a o-algebra.
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Proof. Exercise. O

Proposition 2.9 (Monotone Class Theorem). Let S be a set and N an
algebra of subsets of S. Then, the smallest set M of subsets of S which
contains N' and is monotone is the o-algebra generated by N .

Proof. For each A € M and consider
My ={BeM:ANBe M, AN-Be M,~-ANBec M}.

It is easy to see that M 4 is monotone. [Exercise.Show this!| Furthermore,
if A€ N, then NV C M4 since N is an algebra. So in this case M C My
by minimality of M and consequently M = M 4. Thus, for B € M we have
B € M4 and hence A € Mp if A€ N. So, N C Mp and by minimality we
conclude M = Mp for any B € M. But this means that M is an algebra.
Thus, by Proposition 8.2, M is a g-algebra. Furthermore, by minimality
and Proposition Z8.1, it is the o-algebra generated by N. O

Definition 2.10. Let S be a set and M a g-algebra of subsets of S. Then,
we call the pair (S, M) a measurable space and the elements of M measurable
sets.

Definition 2.11. Let S be a measurable space and U a subset of S. Then,
the o-algebra on S intersected with U is called the induced o-algebra on U.

Definition 2.12. Let S be a topological space. Then, the o-algebra gener-
ated by the topology of S is called the algebra of Borel sets. Its elements
are called Borel measurable.

2.2 Measurable Functions

As we see the concept of a measurable space is very similar to the concept of
a topological space. Both are based on a set of subsets closed under certain
operations. We can push this analogy further and consider the analog of a
continuous function: a measurable function.

Definition 2.13. Let S,T be measurable spaces. Then a map f : S —
T is called measurable iff the preimage of every measurable set of T  is a
measurable set of S. If either T or S or T" and S are topological spaces
instead we call f measurable iff it is measurable with respect to the generated
o-algebra(s) of Borel sets.

Proposition 2.14. Let S,T,U be measurable spaces, f : S — T and g :
T — U measurable. Then, go f: S — U is measurable.
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Proof. Immediate. O

Proposition 2.15. Let S be a measurable space, T a topological space and
f S = T. Then, f is measurable iff the preimage of every open set is
measurable. Also, f is measurable iff the preimage of every closed set is
measurable.

Proof. Exercise. O

Corollary 2.16. Let S and T be topological spaces and f : S — T a contin-
uwous map. Then, f is measurable.

Proposition 2.17. Let S be a measurable space, T and U topological spaces,
f:8 —=>TxU. Denote by fr : S — T and fy : S — U the component
functions. If the product f : S — T x U is measurable, then both fr and fy
are measurable. Conversely, if T and U are second-countable and fr and fy
are measurable, then f is measurable.

Proof. First suppose that f is measurable. Then, fr = pr o f, where pp
is the projection T x U — T'. Since pr is continuous, it is measurable by
Corollary 18 and the composition fr is measurable by Proposition ZT4.
In the same way it follows that fi; is measurable.

Conversely, suppose now that fr and fi; are measurable. If V' C T and
W C U are open sets, then f;'(V) and f? L(W) are measurable in S and
so is their intersection f~1(V x W) = fz (V) N f;*(W). Since T and U
are second-countable, every open set in T' X U can be written as a countable
union of products of open sets in 7" and U [Exercise.Show this!|. But the
preimage of such a countable union in S under f~! can be written as a
countable union of preimages. Since these are measurable, their countable
union is also measurable. It follows then from Proposition EZI3 that f is
measurable. O

In the following K denotes either the field of real numbers R or the field
of complex numbers C.

Proposition 2.18. Let S be a measurable space, f,g : S — K measurable
and A € K. Then:

o |f|:x— |f(x)| is measurable.
o f+g:x— f(x)+ g(x) is measurable.

o \f:xz+— Af(x) is measurable.
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o fg:x— f(x)g(x) is measurable.
Proof. Exercise. O

This shows in particular that measurable functions with values in R or C
form an algebra. Another important property of the set of measurable maps
is its closedness under pointwise limits. This can be formulated for the more
general case when the values are taken in a metric space.

Theorem 2.19 (adapted from S. Lang). Let S be a measurable space and
T a metric space. Suppose {fn}nen is a sequence of measurable functions
fn S — T which converges pointwise to the function f : S — T. Then, f
15 measurable.

Proof. Let U be an open set in T. Suppose x € f~1(U). Since {fn(2)}nen
converges to f(z) there exists m € N such that z € £, 1(U) for all n > m. In
particular, z € |J°2, f,1(U) for any k € Nand so also z € (oo, U0, £ 1 (U).
Since this is true for any z € f~1(U) we get

e U HHo).

k=1n=k

Consider now for all [ € N the open sets
U ={xeU:dzy) >1/IVy ¢ U}.

Then, U = |J;2, U; and applying the above reasoning to each U; we get,

[c e OluNe o]

oycUN U rto.

l=1k=1n=k

Suppose now that = ¢ f~'(U) and fix I € N. Since By, (f(z) NU; = 0
there exists m € N such that = ¢ f,}(U;) for all n > m. In partic-
ular, z & Moy UnSy, £ (U1).  Since this is true for any | € N we get
z ¢ U Nie, U2, £ (U)). Since this is true for any z ¢ f~1(U) we
get, combining with the above result,

[c.olNe ol o]

Fao=UNU .

I=1k=1n=k

Since f;, is measurable for all n € N the right hand side is measurable. We
have thus shown that preimages of open sets are measurable. By Proposi-
tion I3 this is sufficient for f to be measurable. O
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Definition 2.20. Let S be a measurable space. A map f: S — K is called
a simple map iff it is measurable and takes only finitely many values.

Proposition 2.21. Let S be a measurable space and f: S — K a map that
takes only finitely many values. Then f is a simple map (i.e., is measurable)
iff the preimage of each of the values of f is measurable.

Proof. Exercise. O

Proposition 2.22. The simple functions with values in K form a subalgebra
of the algebra of measurable functions with values in K.

Proof. Exercise. O

Theorem 2.23 (adapted from S. Lang). Let S be a measurable space and
f 8 = K measurable. Then, f is the pointwise limit of a sequence of simple
maps. 1If, moreover, f takes values in R(T, then the sequence can be chosen
to increase monotonically.

Proof. Consider first the case K = R. Fixn € N. Foreach k € {1,...,2" n}
define the interval Iy := [-n + kQ_nl, —n + 2%) Also, define Iy := (—o0, —n)
and Iyn+1,,1 = [n,00). Notice that R is the disjoint union of the measur-
able intervals Iy for k € {0,...,2""n + 1}. Now set X, := f~1(I}) for
all k € {0,...,2""n + 1}. Since the intervals I are measurable so are the
sets Xi. Define the function f, : X — R by f,(Xk) := —n + % for all
ke{l,....,2" n+1} and f,(Xo) := —n. It is easy to see that {f, }nen is a
sequence of simple functions that converge pointwise to f. |[Exercise.Show
this!] Moreover, if f takes values in R(')F only, the sequence is monotonically
increasing. |[Exercise.Show this!| To treat the case K = C we decompose f
into its real and imaginary part. The sum of simple sequences for each part
is again a simple sequence. O

2.3 DPositive Measures

Definition 2.24. Let {a,}neny be a monotonously increasing sequence of
real numbers. Then we say that lim,, ,. a, = oo iff for any a € R there
exists m € N such that a,, > a for all n > m.

Definition 2.25 (Positive Measure). Let S be a set with an algebra M of
subsets. Then, a map pu : M — [0, 00] is called a (positive) measure iff it is
countably additive, i.e., satisfies the following properties:

e 1(0)=0.



Robert Oeckl - RA NOTES — 15/11,/2012 21

e Let {Up}nen be a sequence of elements of M such that U, N U, = 0
if n # m and such that (J,,cy Un € M. Then,

u(U Un) => 1(Un).

neN neN

If U € M, then u(U) is called its measure. Moreover, a measurable space S
with o-algebra M and positive measure p : M — [0, 00] is called a measure
space.

We shall mostly be interested in the case where M actually is a o-algebra.
However, it will turn out convenient to keep the definition more general when
we consider constructing measures.

Proposition 2.26. Let S be a set, M an algebra of subsets of S and p :
M — [0,00] a measure. Then, the following properties hold:

o Let A,Be€ M and A C B. Then, u(A) < u(B).
o Let {An}nen be a sequence of elements of M such that | J, ey An € M.
Then,
7 (U An> <> u(An).
neN neN

o Let {Ap}nen be a sequence of elements of M such that Ay, C A1 for

alln € N and | J,,cy An € M. Then,
p (U An) = L )
neN

o Let {A,}nen be a sequence of elements of M such that Ay, O Aptq for
all n € N and (,,ey An € M. If furthermore, u(A,) < oo for some

n € N then,
7 (ﬂ An) = lim p(Ay).

Proof. Exercise. O

Exercise 16. Check whether the following examples are measures.
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e Let S be a set and consider the o-algebra of all subsets of S. If A C S
is finite define u(A) to be its number of elements. If A C S is infinite
define u(A) = oo. p is called the counting measure.

e Let S be a set and consider the o-algebra of all subsets of S. If A C S
is finite define p(A) = 0. If A C § is infinite define p(A) = oo.

e Let S be a set and consider the o-algebra of all subsets of S. If A C S'is
countable define u(A) = 0. If A C S is not countable define u(A) = oo.

e Let S be a set and consider the o-algebra of all subsets of S. Let x € S.
For A C S define u(A) = 1if x € A and pu(A) = 0 otherwise. p is
called the Dirac measure with respect to x.

Definition 2.27. Let S be a measure space and A C S a measurable subset.
We say that A is o-finite iff it is equal to some countable union of measurable
sets with finite measure. We say that a measure is finite respectively o-
finite iff the measure space is finite respectively o-finite with respect to the
measure.

Exercise 17. Which of the examples of measures above are o-finite?

Definition 2.28. Let (S5, M, i) be a measure space. If every subset of any
set of measure 0 is measurable, then we call (S, M, u) complete.

Proposition 2.29. Let (S, M, ) be a measure space. Then, there exists a
unique smallest o-algebra M* that contains M and such that (S, M*, ) is
complete. (S, M*, ) is called the completion of (S, M, ). Moreover, the
element of M* are precisely the sets of the form AU N, where A € M and
N is a subset of a set of measure 0 in M.

Proof. Exercise. O

Proposition 2.30. Let (S, M, ) be a measure space and f : S — K mea-
surable with respect to M*. Then, there exists a function g : S — K such
that g is measurable with respect to M and g does not differ from f outside
of a subset N € M of measure 0.

Proof. By Theorem PZZ3 there exists a sequence {f,}nen of simple maps
with respect to M™* that converges pointwise to f. For each f, we can find
a set N, € M of measure 0 such that the function k, : S — K defined by
kn(p) = fn(p) if p € S\ N, and k,(p) = 0 otherwise, is simple with respect to
M. (Exercise.Show this!) The set N :=J,~,; N, € M has measure zero.
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Moreover, g, : S — K defined by g, (p) = fu(p) if p € S\ N and g,(p) =0
otherwise, is simple with respect to M. Moreover, the sequence {g,}nen
converges pointwise to g : S — K defined by g(p) = f(p) if p € S\ N and
g(p) = 0 otherwise. Thus, by Theorem P19, g is measurable with respect to
M. O

2.4 Extension of Measures

We now turn to the question of how to construct measures. We will focus
here on the method of extension. That is, we consider a measure that is
merely defined on an algebra of subsets and extend it to a measure on a
o-algebra.

Definition 2.31. Let S be a set and M a o-algebra of subsets of S. Then,
amap A : M — [0,00] is called an outer measure on M iff it satisfies the
following properties:

e \(0)=0.
o Let A,B€ M and A C B. Then, A(A) < A(B). (monotonicity)
e Let {A,}nen be a sequence of elements of M. Then,

A (U An> <> AA,). (countable subadditivity)

neN neN

Lemma 2.32. Let S be a set, N an algebra of subsets of S and j a measure
on N. On the o-algebra B(S) of all subsets of S define the function \ :
PB(S) — [0, 00] given by

ANX) = inf{Z,u(An) t A, € NVn eNandX C | An}.
neN neN

Then, X is an outer measure on P(S). Moreover, it extends p, i.e., N(A) =

w(A) for all Ae N.
Proof. Exercise. O

Definition 2.33. Let S be a set and A\ an outer measure on the o-algebra
PB(S) of all subsets of S. Then, A C S is called A-measurable iff \(X) =
AMX NA)+ XX N-A) forall X C8S.
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Lemma 2.34. Let S be a set and X an outer measure on the o-algebra P(S)
of all subsets of S. Let M be the set of subsets of S that are A\-measurable.
Then, M is a o-algebra and X\ is a complete measure on M.

Proof. Exercise. O

Theorem 2.35 (Hahn). Let S be a set, N an algebra of subsets of S and p
a measure on N'. Then, p can be extended to a o-algebra M containing N
such that p is a complete measure on M and for all X € M we have

w(X) = inf{ZM(An) : A € NVn eNandX C [ An}.

neN neN

Proof. Exercise. O

Proposition 2.36 (Uniqueness of Extension). Let S be a measurable space
with o-algebra M and measures 1, 2. Suppose there is an algebra N C
M generating M and such that u(A) := p1(A) = p2(A) for all A € N.
Furthermore, assume that p is o-finite with respect to N'. Then, p1 = o
also on M.

Proof. Let {X,}nen be a sequence of elements of N such that S = |,y X
and X,, € X, 41 and pu(X,) < oo for all n € N. (By o-finiteness, there is
a sequence {Y;}ren with S = [y Yr and p(Yy) < oo for all & € N. Now
set X, := Jp_; Yi.) Define the finite measures py,(A) := p1 (AN X,) and
t2n(A) == p2(AN X,) on M for all n € N. Now, let B,, be the subsets of
M where 11, and pg,, agree. By construction, N' C B, for all n € N. We
show that the [5,, are monotone.

Fix n € N. Let {Ag}ren be a sequence of elements of B,, such that Ay C
Apyq for all k € N and set A := |J;cy Ax- Then, using Proposition 2228,

pn(A) = Jim pn(Ag) = Jim p2.n(Ar) = p2,n(A).

So, A € B,. Now, let {Ax}ren be a sequence of elements of B, such that
A 2 Apyq forall k € Nand set A := (), Ax. Again using Proposition
we get (note that the finiteness of the measure is essential here),

,u,Ln(A) = lim ,u,17n(Ak) = lim ,u,gm(Ak) = ,ugm(A).
k—o00 k—o00

So, A € B,,. Hence, B,, is monotone and by Proposition 9 we must have
M C B,, and hence M = B,,.

Thus, p1, = po, for all n € N But then, puy = lim, oo p1n =
limy, o0 12, = p2. This completes the proof. ]
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Proposition 2.37. Let (S, M, u) be a measure space. Let N be an algebra
of subsets of S that generates M. Denote the completion of M with respect
to pu by M*. Then, for any X € M* with finite measure and any € > 0 there
exists A € N such that

p(XNA) U (AN X)) <e

Proof. Let X € M*. By Hahn’s Theorem P=33 there exists a sequence
{An}nen of disjoint elements of NV such that X C J,, oy An and

D (An) < p(X) +€/2,
n=1

Now fix k£ € N such that

[e.e]

Z w(Ay) < e/2.

n=k+1

Set A := Uﬁzl A,,. Then, on the one hand,

A\ X) <M<<L:J ) ><e/2,

while on the other hand,

ovaen([§2)1 )+ (§.4)

This implies the statement. O

2.5 The Lebesgue Measure

In the following we are going to construct the Lebesgue measure. This is the
unique (as we shall see) measure on the real numbers assigning to an interval
its length. The construction proceeds in various stages.

Lemma 2.38. The finite unions of intervals of the type [a,b), (—oc0,a), and
[a,0) together with O form an algebra N of subsets of the real numbers.

Proof. Exercise. O

Lemma 2.39. The prescription u(la,b)) = b — a determines uniquely a
finitely additive function p: N — [0,00] on the algebra N considered above.
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Proof. Exercise. O

Lemma 2.40. The function u : N — [0,00] defined above is countably
additive and thus a measure.

Proof. Let {A,}nen be a sequence of pairwise disjoint elements of N such
that A :=J,,cy € N. We wish to show that

p(A) = 3 lAn).

neN

By finite additivity we have p(A) > pu(Un_, An) = > u(A,) for all
m € N and hence

p(A) =D u(An).

neN

It remains to show the opposite inequality.

Assume at first that A is a finite interval [a,b). Then, A is the disjoint
union of a sequence of intervals {Ij }reny with I, = [ag, b) in such a way that
each A, is the finite union of some I;. (We also allow the degenerate case
ar = by in which case I, = ).) Fix now € > 0 (with € < b — a) and define
Il := (a, — 2=+ Ve by) for all k € N. Then, the open sets {I} }ren cover
the compact interval [a,b — €/2]. Thus, there is a finite set of indices I C N
such that [a,b — €/2] C ey I, Then clearly also [a,b — €/2) C U 1L,
where I}/ := [a, — 2~ ** Ve by.). By finite additivity of 1 we get

p(la,b—€/2)) < p (U I;’J) <y (1)

kel kel
=3 (st + 2 V) <24+ 3 ().
kel kel

But since pu(A) = p([a,b—€/2)) +€/2, we find pu(A) < e+, 7 p(Ix). Thus,

there exists m € N such that p(A) < e+ >, u(A,). But since e was

arbitrary we can conclude pu(A) <37 -y #(A,) and hence equality.
Exercise.Complete the proof. O

Proposition 2.41. Consider the real numbers with its o-algebra B of Borel
sets. Then, the prescription p(la,b)) := b — a uniquely extends to a measure
w:B—|0,00].
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Proof. By Lemmas PZ38, and 40 the prescription uniquely defines
a measure u on the algebra A of unions of intervals of the type [a,b),
(—o0,a), and [a,00). By Theorem PZ33 p extends to a o-algebra M con-
taining N. But the c-algebra generated by A is the o-algebra B of Borel
sets. (Exercise.Show this!) So, in particular, we get a measure on B. By
Proposition this is unique since p is o-finite on N. (Exercise.Show
this latter statement!) O

Definition 2.42. The measure defined in the preceding Proposition is called
the Lebesgue measure on R.

Exercise 18. Consider the real numbers with the Lebesgue measure. De-
termine p(Q) and p(R\ Q).

Exercise 19. The Cantor set C is a subset of the interval [0,1]. It can be
described for example as

oo (3"—1)/2
2k 2k +1
n=0 k=0

Show that p(C) = 0.

Proposition 2.43. The Lebesgue measure is translation invariant, i.e., pu( A+
c) = u(A) for any measurable A and c € R.

Proof. Straightforward. O

Exercise 20. Consider the following equivalence relation on R: Let  ~ y
iff z —y € Q. Now choose (using the axiom of choice) one representative out
of each equivalence class, such that this representative lies in [0, 1]. Call the
set obtained in this way A.

1. Show that (A+7r)N(A+s) = 0 if r and s are distinct rational numbers.
Supposing that A is Lebesgue measurable, conclude that p(A) = 0.

2. Show that R = quQ(A—i—q). Supposing that A is Lebesgue measurable,
conclude that p(A) > 0.

We obtain a contradiction showing that A is not Lebesgue measurable.

We can define the Lebesgue measure more generally for R™. The intervals
of the type [a,b) are replaced by products of such intervals. Otherwise the
construction proceeds in parallel.
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Proposition 2.44. Consider R™ with its o-algebra B of Borel sets. Then,
the prescription (a1, b1) X « -+ X [an,by)) = (b1 —ay) -+ (by, — a,) uniquely
extends to a measure p : B — [0, 00].

Exercise 21. Sketch the proof by explaining the changes with respect to
the one-dimensional case.
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3 The integral

3.1 The integral of simple functions

Definition 3.1. Let X be a measure space with measure p. A simple
function X — K is called integrable iff it vanishes outside of a set of finite
measure. We denote the vector space of integrable simple functions on X
with respect to the measure pu by S(X, p).

Exercise 22. Show that the integrable simple functions actually form an
algebra over K.

Definition 3.2. Let S be a measure space with measure pu. A (u-)integral
is a collection of linear maps

one for each measurable subset X C S, satisfying the following properties:

e If X has finite measure, then [, 1du = pu(X), where 1 € S(X, p) is
the constant function with value 1.

e If X1, X5 C X are measurable such that X1NXs = ) and X;UXy = X,
and f € S(X,p) then [y fdu= [y fdu+ [y, fdu

Proposition 3.3. The integral exists and is unique.

Proof. Exercise. O

When it is clear with respect to which measure the integral is taken, the
symbol dp may be omitted. When the integral is taken with respect to the
whole measure space and it is clear which measure space this is, the subscript
indicating the set over which is integrated may be omitted.

Proposition 3.4. The integral of integrable simple maps has the following
properties:

o If f and g are real valued and f(x) < g(z) for all z € X, then [ f <
Jx9-

o If f(x) >0 for allz € X and A C X is measurable, then [, f < [ f.

° |fo|§fX|f"
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o Suppose X has finite measure, then [y | f| < || flsup (X). (Here ||| sup
denotes the supremum norm.)

Proof. Exercise. O

Proposition 3.5. The space S(X, ) carries a seminorm given by

1l = /X fldu.

Proof. Exercise. O

The fact that we only have a seminorm and not necessarily a norm comes
from the inability of the integral to "see" sets of measure zero.

Proposition 3.6. Let f € S(X,u). Then, ||f|l1 = 0 iff f vanishes outside
a set of measure zero.

Proof. Exercise. O

We also say "almost everywhere" to mean "outside a set of measure zero".

Lemma 3.7. Let (X, M, i) be a measure space and N an algebra of subsets
of X that generates the o-algebra M. Let f € S(X,u) and € > 0. Then,
there exists g € S(X,u) such that g is measurable with respect to N (i.e.,
g ({p}) CN for all p € K) and such that ||f — g1 < e.

Proof. Exercise.Hint: Use Proposition 2232 0

3.2 Integrable functions

Lemma 3.8. Let {fy}nen be a Cauchy sequence of elements of S(X, )
with respect to the seminorm || - ||1. Then, there exists a subsequence which
converges pointwise almost everywhere to some measurable map f and for
any € > 0 converges uniformly to f outside of a set of measure less than e.

Proof. Since {fy,}nen is Cauchy, there exists a subsequence {f,, }ren such
that
I foy — fulll <272 VEEN and VI>k.

Define
Yy = {x €X: |fnk+1(x) - fnk(x” > 2_k} Vk € N.

Then,

27" (V) < /Y | frgsr — Fril < /X | frnsr — frnl <272 VkeN.
k
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This implies, u(Yy) < 27% for all k € N. Define now Z; := Usz; Y for all
j € N. Then, u(Z;) <277 for all j € N.

Fix ¢ > 0 and choose j € N such that 2!/ <. Let z € X \ Zj. Then,
for k > j we have

’fnk+1 (x) - fnk(x)’ < 2ik.

Thus, the sum Y 22 | fn, ., (z) — fn, () converges absolutely. In particular,
the limit

f(@) = Jim fo(2) = fo, (@ +me+1 = fu (@)

exists. For all k > j we have the estimate,

f(x) = for (2 meﬂ — Fu@)| Y | (@) = f(2)] < 247F
=k

Thus, {fn, }ken converges to f uniformly outside of Z;, where u(Z;) < e.
Repeating the argument for arbitrarily small € we ﬁnd that f is defined on
X\Z, where Z := ;2 Z;. Furthermore, {f,, }ren converges to f pointwise
on X \ Z. Note that u(Z) = 0. By Theorem P19, f is measurable on X \ Z.
We extend f to a measurable function on all of X by declaring f(z) = 0 if
x € Z. This completes the proof. O

Lemma 3.9. Let {fn}nen and {gn}nen be Cauchy sequences of elements
of S(X, p) with respect to the seminorm || - ||1. Furthermore, assume that
both sequences converge pointwise almost everywhere to the same measurable
function f. Then, the following limits exist and are equal,

lim fn= lim n.

Proof. Tt is easy to see that both limits exist (Exercise.). It remains to
show that they are equal. To this end consider the sequence formed by the
differences hy,, := f, — gn. Then, {hp}nen is a || - ||1-Cauchy sequence that
converges pointwise almost everywhere to zero. We need to show that the
limit lim,, oo f x P (which we already know to exist) is equal to zero.

By Lemma B there exists a subsequence {hy, }reny with the following
property: For any 6 > 0 there exists a set Zs with u(Zs) <  such that the
subsequence converges absolutely and uniformly to 0 on X \ Zs.
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Choose € > 0 arbitrary. There exists m € N such that ||h, — hp|1 < €
for all n > m. Let A be a set of finite measure, so that h,, vanishes outside

of A. Then,

/ |hn|:/ hn_hm|§/’hn—hm|<€ Vn > m.
X\A X\A X

Set § := €/(1 + ||hm]lsup) and & := €/(1 + p(A)). Then, there exists [ € N
such that n; > m and |hy,, (z)| < { for all k > [ and z € X \ Zs. This implies,

[ Bl <aa\zoe<uaye<e vhz1
A\Zs

On the other hand,

|| < [ Jhn = Bn| + [ |
Zs Zs Zs

< b = hmlly + 1(Zs) [|hmllsup < 2¢ VR = m.

Taking the three integral estimates together we get

‘/ - g/ \hnk|§/ |hnk|—|—/ |hnk|+/ | < de Yk > 1.
X X X\A A\Zs Zs

Since € was arbitrary, we conclude

lim h, = lim I, = 0.
n—o0 X k—o0 X

We are now ready to define the integral more generally.

Definition 3.10. A measurable map f on X is called integrable iff there
exists a || - |[1-Cauchy sequence of integrable simple maps that converges
pointwise to f almost everywhere. We denote the vector space of integrable
maps with values in K by £1(X, u, K).

Exercise 23. Show that the integrable functions actually form a vector
space.

Definition 3.11. Let f € £Y(X,u) and {f,}nen a Cauchy sequence of
elements of S(X, u) that converges pointwise to f almost everywhere. We
define the (u-)integral of f on X by

/ f:= lim fn.
X n— oo X
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That this definition is well follows immediately from Lemma B™.

Proposition 3.12. Let f,g be measurable maps and f = g almost every-
where. Then f is integrable iff g is integrable. Moreover, then,

[r-J»

Proof. Exercise. O

Proposition 3.13. Let f be an integrable map. Then, f vanishes outside a
o-finite set.

Proof. Exercise. O

Lemma 3.14. Let f € LY(X, 1) and {fn}nen a Cauchy sequence in S(X, )
which converges pointwise to f almost everywhere. Then, |f| € LY(X, u) and
{|fnl}nen is a Cauchy sequence in S(X, ) which converges pointwise to |f|
almost everywhere.

Proof. Exercise. O

Proposition 3.15. The space L1(X, 1) carries a seminorm given by

1l = /X fldu.

Proof. Exercise. O

Proposition 3.16. Let { f, }nen be a Cauchy sequence of elements of S(X, )
converging pointwise to f € LY(X,u) almost everywhere. Then, {fn}nen
converges to f in the || - ||1-seminorm. In particular, every integrable map
can be approzimated arbitrarily well with respect to the || - ||1-seminorm by
integrable stmple maps.

Proof. Fix € > 0. Since {fy}nen is Cauchy there exists k& € N such that
| fn — fmll1 < €for all n,m > k. Fix now some n > k. Then, {|fn — fim|}men
is a Cauchy sequence of integrable simple maps and converges pointwise
almost everywhere to the integrable map |f, — f|. (Use Lemma BT4.) So,
using the definition of the integral,

=l = [ V= 11= tim [ 1 ful = Jim = full <

This implies the statement. O
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Theorem 3.17. The space LY(X, ) is complete with respect to the semi-
norm || - ||1.

Proof. Consider a Cauchy sequence {f,}nen in £1(X, ). Using Proposi-
tion B8 there is a sequence {gn nen in S(X, 1) such that ||f, — gnll < 1/n
for all n € N. Tt is easy to see that {g, }nen is Cauchy. (Exercise.Show this!)
By Lemma B there is a subsequence {gy, }reny which converges pointwise
almost everywhere to an integrable function f. Again using Proposition B18
this implies that {gn, }ren converges to f in the || - ||;-seminorm. But since
{gn}nen is Cauchy, by Proposition I3 it must also converge to f in the
|| - [[1-seminorm. In particular, for € > 0 there exists k¥ € N such that
|f — gnll1 < €/2 for all n > k. But then, for all n > sup{k,2/e} we have

1f = Fallt < [1f = gnllL + lgn = fullh <€/2+1/n <e

That is, {fn}nen converges to f in the || - ||;-seminorm. O

3.3 Elementary properties of the integral

Proposition 3.18. The integral of integrable maps has the following prop-
erties:

o If X1, X5 are measurable such that X = X1 UXs and X1N Xy = 0 then
fo:fX1f+fX2f

o If f and g are real valued and f(x) < g(x) for almost all x € X, then
Ixf<Jxo

e If f and g are real valued and integrable, then sup(f,g) and inf(f,g)
are integrable.

o [[xfI< /xSl
e Suppose X has finite measure and f is bounded, then [ |f| < || fllsup p(X).

Proof. Exercise. O

Proposition 3.19. Let X be a measurable space, f : X - R, g: X = R
maps. Then, f+1ig: X — C is integrable iff f and g are integrable.

Proof. Exercise. O
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Theorem 3.20 (Averaging Theorem). Let X be a measure space with o-
finite measure p. Let S C K be a closed subset and f € LY(X, u,K). If for
any measurable set A of finite and positive measure we have

0l

— [ fdu €S,
u(d) Jo™
then f(x) € S for almost all x € X.

Proof. Let C := {x € X : f(x) ¢ S}. We need to show that p(C) = 0.
Assume the contrary, i.e., u(C) > 0. Write K\ S = |J,,cry Bn as a countable
union of closed balls {B,}nen. (Use second countability of K and recall
Proposition [39.) Their preimages are measurable and cover C. There
is at least one closed ball B, such that u(f~1(B,)) > 0. Say this closed
ball has center & and radius r. Furthermore, there is a measurable subset
D C f~YB,) such that 0 < u(D) < oco. Then,

w7 = -

1 1
SH(D)/D‘f_x’dNSM(D)/DTdN:T-

In particular, ﬁ fD fdu € By,. But B, NS =10, so we get a contradiction
with the assumptions. ]

Exercise 24. 1. Explain where in the above proof o-finiteness was used.
2. Extend the proof to the case where p is not o-finite by replacing f(z) € S
with f(x) € SU{0} in the statement of the Theorem.

Proposition 3.21. Let f € £! and assume fA f =0 for all measurable sets
A. Then, f =0 almost everywhere.

Proof. Exercise. O
Proposition 3.22. Let f be an integrable function. Then, ||fll1 = 0 iff
f =0 almost everywhere.

Proof. Exercise. O
Proposition 3.23. Let (X, M, i) be a measure space and N an algebra of
subsets of X that generates the o-algebra M. Let M* denote the completion
of M with respect to p. Let f € LY(X, M*, i) and € > 0. Then, there

exists g € S(X, u) such that g is measurable with respect to N' and such that
If =gl <e

Proof. This is clear from combining Proposition BI8 with Lemma B™. [
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3.4 Integrals and limits

Theorem 3.24. Let {f,}nen be a sequence in LY(X,p) converging to f €
LY(X,p) in the || - ||1-seminorm. Then, there erists a subsequence which
converges pointwise almost everywhere to f and for any € > 0 converges
uniformly to f outside of a set of measure less than e.

Proof. We first consider the special case f = 0. The proof proceeds in a way
similar to that of Lemma B=8. Consider a subsequence such that

I fncll <272 VkeN.

Define
YVii={z € X :|fo(x)>2"" VkeN.

Then,

27 (Vi) < [ il < / [fre <27 VEEN.
Yi X
This implies, (Y;) < 27% for all k& € N. Define now Z; := Urz, Y for all
j € N. Then, pu(Z;) <277 for all j € N.
Fix € > 0 and choose j € N such that 2177 < e. If z ¢ Z; then for k > j
we have

[ fi (@) < 27,

Thus, {fn, }ren converges to 0 uniformly outside of Z;, where u(Z;) < e.
Also, { fn, (%) }ken converges to 0 if » ¢ Z := (72, Z;. Note that pu(Z) = 0.
In the general case f # 0 we apply the previous proof to the sequence

{fn - f}nEN- ]

Proposition 3.25. Let {f,}nen be a Cauchy sequence in LY(X, u) converg-
ing pointwise to the measurable function f almost everywhere. Then f is
integrable and { fn}nen converges to f in the || - ||1-seminorm.

Proof. By Theorem BT7 there exists an integrable function g such that
{fn}nen converges to g in the || - ||;-seminorm. By Theorem a sub-
sequence { fn, }ren converges to g pointwise almost everywhere, i.e., outside
a set Z, of measure zero. On the other hand {f,},en (and any of its subse-
quences) converges to f almost everywhere, i.e., outside a set Z; of measure
zero. Thus, f = g almost everywhere, i.e., outside the set of measure zero
Z4 U Zg. By Proposition B2, f is integrable. Moreover, ||f — g[|1 = 0 and
hence {fy }nen converges to f in the || - ||;-seminorm. O
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Theorem 3.26 (Monotone Convergence Theorem). Let { f,, }nen be a point-
wise increasing sequence of real valued functions in LY(X, ) such that there
exists a constant ¢ € R with

/fngc Vn € N.
X

Then, the sequence { f }nen converges to some function f € LY(X, ) in the
| - [|1-seminorm and also converges pointwise to f almost everywhere.

Proof. The sequence { [ « fntnen is increasing and bounded and thus con-
verges. In particular, it is a Cauchy sequence. But

‘/Xf"_/xfm‘:/X|fn—fm|=||fn—fm!1 vn,m €N,

since {fy}nen is pointwise increasing. So, {fn}nen is a Cauchy sequence in
the || - ||1-seminorm. By completeness (Theorem BT1) there exists a function
f € LYX,u) so that {fn}nen converges to f in the || - ||;-seminorm. By
Theorem there exists a subsequence {f,,, }ren that converges pointwise
to f almost everywhere. But, since {f,,(z)}nen is increasing for all z € X it
must converge for any 2 € X where a subsequence converges. Thus, { f, }nen
converges to f almost everywhere. O

Proposition 3.27. Let {f,}nen be a sequence of real valued integrable func-
tions such that there exists a real valued integrable function g with f, < g
for allm € N. Then, sup,,cy fn s integrable and,

sup/ fn</ sup fn-
neNJX X neN

Proof. Since {fy}nen is bounded pointwise by g, the function sup,,cy fr is
well defined. Set g, := sup{fi,..., fn} for all n € N. Then, {gn}nen is a
pointwise increasing sequence of integrable functions. In particular, the g,
are measurable and so is by Theorem 2T their limit lim,, o0 gn = sup,en fn-
Moreover, | x9n < S y g for all n € N. Thus, we can apply Theorem and
there exists an integrable function f to which {g,}nen converges pointwise
almost everywhere. Thus, f = sup,,cy fn almost everywhere and sup,,cy fn
is integrable by Proposition BT2. For the inequality observe that fi <
sup,,en fn for all k£ € N. Hence, fX fe < fX sup,en fn for all k € N. Taking
the supremum over k£ € N implies the claimed inequality. O
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Proposition 3.28 (Fatou’s Lemma). Let { f,}nen be a sequence of real val-
ued integrable functions such that there exists a real valued integrable function
g with f, > g for all n € N. Assume furthermore that liminf, o [ fn ea-
ists. Then, f(x) := liminf, o fn(x) exists almost everywhere and can be
extended to an integrable function on X. Furthermore,

/ f<hnn;1£f/ fn-

Proof. Fix k € N and apply Proposition BZ7 to the sequence {— fx1n—1}nen-
Thus, hy := inf,> fy is integrable and

/ hy < mf/ fngliminf/ fo VkeEN.
n—oo X

But the sequence {hy}ren is increasing and has bounded integral, so we can
apply Theorem BZ8. Thus {hy }ren converges pointwise almost everywhere
to an integrable function f and

lim | hy = / f.
k—oo Jx X

Thus,
f < lim inf / fn-
n—oo
But f(x) = limg_oo hr(x) = liminf, o fr(x) almost everywhere. This
completes the proof. O

Theorem 3.29 (Dominated Convergence Theorem). Let {f,}nen be a se-
quence of integrable functions such that there exists a real valued integrable
function g with |f,| < g for all n € N. Assume also that {fn}nen con-
verges pointwise almost everywhere to a measurable function f. Then, f is
integrable and { fn}nen converges to f in the || - ||1-seminorm.

Proof. Fix k € N. Consider the set of real valued integrable functions {|f,, —
Jml}mmyerxr where I = {k,k+1,...}. Since |f, — fm| < 2g foralln,m € I
we can apply Proposition B27 and conclude that gy := sup,, ;> | fn — fm| is
integrable. The {gj}ren form a pointwise decreasing sequence and [ g > 0.
So we can apply Theorem to {—gk}ren. Since we already know that
{9k }ken converges pointwise to zero almost everywhere we conclude that it
also converges to zero in the || - ||;-seminorm. This implies that {f,}nen
is a Cauchy sequence. (Exercise.Show this!) By Proposition BZ23, f is
integrable and {f, }nen converges to f in the || - ||1-seminorm. O
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Proposition 3.30. Let f be a measurable function. Then, f is integrable iff
| f| is integrable. Moreover, if |f| < g for some real valued integrable function
g, then f is integrable.

Proof. By Lemma B4 integrability of |f| follows from integrability of f. It
remains to show that given g integrable and real valued such that |f| < g,
f is integrable. Firstly, since ¢ is integrable, it vanishes outside a o-finite
set A by Proposition BT3. The same is thus true of f. Let {A,}nen be an
increasing sequence of sets of finite measure such that A = J,cy An. By
Theorem 723, there is a sequence {fy,}nen of simple maps that converges
pointwise to f. Define a sequence of maps {hy, }ren as follows:

() 1= fu(z) ifz € Ayand|f,(z)| < 2¢(zx)
" "o otherwise

It is easy to see that h, is an integrable simple map for each n € N.
(Exercise.Show this!) Moreover, the sequence {h,}nen converges point-
wise to f and we have |h,| < 2¢ for all n € N. Applying Theorem
shows that f is integrable. O

Proposition 3.31. Let {f,}nen be a sequence of integrable functions con-
verging pointwise almost everywhere to a measurable function f. Assume
also that there is a constant ¢ € R such that || fu|l1 < ¢ for alln € N. Then,
f is integrable.

Proof. {|fn|}nen is a sequence of non-negative valued integrable functions
converging pointwise to the measurable function | f|. The sequence { [ | fn|}nen
takes values in the compact interval [0, ¢] and thus must have a point of ac-
cumulation (Proposition I=34). Together with boundedness from below this
implies the existence of liminf,, .o [ |fn| and we can apply Proposition BZ8.
By assumption |f(x)| = lim, 0 | fn(2)| = liminf,, o | fn(z)| almost every-
where, so |f| is integrable. By Proposition B30, f is integrable. O

3.5 Exercises

Exercise 25 (Lang). Consider the interval [0, 1] with the Lebesgue measure
w. Let {fn}lnen be a sequence of continuous functions f, : [0,1] — [0,1]
which converges pointwise to 0 everywhere. Show that

1
lim fndu=0.

n—oo 0
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Exercise 26 (Lang). Let X,Y be measurable spaces and f : X — Y a
measurable map. Denote the o-algebra on X by M and the o-algebra on Y
by N. Let u be a positive measure on M. Define a function v : N” — [0, o]
as follows: v(N) := u(f~1(N)). Show that v is a positive measure on N
Moreover show that if g € £L1(Y,v), then go f € LY(X, u) and

/gofdu—/gdu.
X Y

Exercise 27 (Lang, extended). Let X be a measure space with finite mea-
sure u and f € £Y(X, ). Show that the limit

tiw [ 171" d
X

n—o0

exists and compute it. Give an example where the limit does not exist if
p(X) = oo.

Exercise 28 (Fundamental Theorem of Differentiation and Integration).
Let f: R — R be continuously differentiable and a,b € R with a < b. Then,

b
/ £ du = £(b) - f(a).

where 1 is the Lebesgue measure. [Hint: Note that f’ is integrable on [a, b].
Consider the map g : R — R given by g(y) := ff f'du. Show that g is
continuously differentiable and that ¢’ = f’. Apply the fact that a function
with vanishing derivative is constant to the difference f — g to conclude the
proof.]

Exercise 29 (Partial Integration). Let f,g : R — R be continuously differ-
entiable and a,b € R with a < b. Show that,

b b
/ fg' dp = fal; —/ f'gdp,
a a
where du is the Lebesgue measure.

Exercise 30 (adapted from Lang). Equip the space [0, oo] with the topology
of the one-point compactification by adding the point co to the interval [0, co)
with its usual topology. (Recall Exercise B).

e Let X be ameasurable space and f : X — [0,00]. Let Y := f~1(]0, 00)).
Show that f is a measurable function iff Y is a measurable set and
fly : Y — [0,00) is a measurable function.
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e Let X be a measure space with o-finite measure p. Show that f: X —
[0, 00| is measurable iff there exists an increasing sequence {fy, }nen of
integrable simple functions f,, : X — [0, co) which converges pointwise

to f.

e (X and p as above.) Let f: X — [0,00] measurable. Let {fy,}nen be
an increasing sequence of integrable simple maps converging pointwise
to f. Define the integral of f to be,

lim fn du.

n—oo X

Show that this does not depend on the choice of sequence. Also show
that this coincides with the usual definition of integral if f(X) C [0, c0)
and if f is integrable. Formulate and prove an adapted version of the
Monotone Convergence Theorem (Theorem BZ8).

e (X and p as above.) Let f: X — [0,00] measurable. For each mea-
surable subset A C X define

nr) = [ ran

Show that pf is a positive measure. Let g : X — [0, 00] measurable

and show that,
/gduf—/ fgdp.
X X
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4 The spaces £ and L7

4.1 Elementary inequalities and seminorms

Lemma 4.1. Let a,b >0 and p > 1. Then,

a+b p<ap+bp_
2 - 2

Let a,b >0 and p > 1. Set q such that 1/p+1/q = 1. Then,

al/Ppt/a < 4. é
p g

Proof. Exercise. O

Definition 4.2. Let X be a measure space with measure p and p > 0.
LP(X, p,K) :={f : X - Kmeasurable : | f|” integrable} .

Define also the function || - ||, : £P(X, 1, K) — R{ given by

1= ([ 197) "

Proposition 4.3. The set LP(X,u,K) for p € (0,00) is a vector space.
Also, || - ||p is multiplicative, i.e., | Af|lp, = [N fllp for all X € K and f € LP.
Furthermore, if p < 1 the function d, : LP(X, p, K) x LP(X, p, K) — [0, 00)
gven by d,(f,q) == ||f — gl is a pseudometric.

Proof. Exercise. O

Definition 4.4. Let X be a measure space with measure u. We call a
measurable function f : X — K essentially bounded iff there exists a bounded
measurable function g : X — K such that ¢ = f almost everywhere. We
denote the set of essentially bounded functions by £%°(X, u, K). Define also
the function || - [|oo : £2°(X, u, K) — R given by

| flloo := inf {||g|lsup : ¢ = fa.e. and g bounded measurable} .

Proposition 4.5. The set L%(X, 1, K) is a vector space and || - ||oo is @
seminorm.

Proof. Exercise. O
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Proposition 4.6. Let f,g be measurable maps such that f = g almost ev-
erywhere. Let p € (0,00]. Then, f € LP iff g € LP.

Proof. Apply Proposition B2 to | f|P and |g|P. O

Proposition 4.7. Let f € LP for p € (0,00). Then, f vanishes outside of a
o-finite set.

Proof. By Proposition B3, | f|P vanishes outside a o-finite set and hence so
does f. O

Proposition 4.8. Let f € L. Then, the set {x : |f(x)] > ||fllo} has
measure zero. Moreover, there exists g € L bounded such that g = f
almost everywhere and ||g||sup = ||glloc = I|f|loo-

Proof. Fix ¢ > 0 and consider the set A, := {z : |f(2)] > |fllec + ¢}
Since there exists a bounded measurable function g such that g = f almost
everywhere and [|g|[sup < || f]|oo+c we must have p(A.) = 0. Thus {A; /, }rnen
is an increasing sequence of sets of measure zero. So, their union A :=
Unen An = {2 : | f(2)] > || flloo} must have measure zero. Define now

(z) = flx) ifre X\ A
TV iteea

Then, ¢ is measurable, bounded, and g = f almost everywhere. Moreover,
llgllsup < || flloo- On, the other hand, since g = f almost everywhere we
must have [|g[sup > || flloo by the definition of || - ||s. Also, f — g = 0 almost
everywhere and hence ||f — gllco < [|0|sups 1-€., ||f — glloc = 0 and thus

[flloo = llglloo- O

Proposition 4.9. Let f € LP for p € (0,00]. Then | f|, =0 iff f =0
almost everywhere.

Proof. If p < oo apply Proposition B22 to |f|P. Exercise.Complete the
proof for p = oo. O

Theorem 4.10 (Holder’s inequality). Let p € [1,00] and q such that 1/p +
1/qg=1. Given f € LP and g € LT we have fg € L and,

Ifglly < [l fllpllglq-
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Proof. First observe that fg is measurable by Proposition EIR since f and
g are measurable.

We start with the case p = 1 and ¢ = co. (The case ¢ =1 and p =
is analogous.) By Proposition B8 there is a bounded function h € £* such
that h = g almost everywhere and ||h||sup = ||g]|cc. We have

Thus, |fh| is bounded from above by an integrable function and hence fh is
integrable by Proposition BZ30. But fh = fg almost everywhere and so fg is
integrable by Proposition BT2. Moreover, integrating the above inequality
over X we obtain,

gl = /X Fol = /X AL < [hllsap /X 1= 111 gloe.

It remains to consider the case p € (1,00). If || ||, =0 or ||g|lq = O then
f or g vanishes almost everywhere by Proposition B9. Thus, fg vanishes
almost everywhere and || fg||1 = 0 by the same Proposition (and in particular
fg € £1). We thus assume now || ||, # 0 and ||g|, # 0. Set

P q
a:= |f—|p, and b:= |g—|q.
1f1lp l9llg

Using the second inequality of Lemma B we find,

LIf]P 1 |g|7
| f9l <! |f|p+7 Iglq.
1 fllpllglly — 2 IfIlp — allgllg

This implies that |fg| is bounded from above by an integrable function and
is hence integrable by Proposition B=30. Moreover, integrating both sides of
the inequality over X yields the inequality that is to be demonstrated. [J

Proposition 4.11 (Minkowski’s inequality). Let p € [1,00] and f,g € LP.
Then,
1+ 9llp < I f1lp + [gllp-

In particular, || - ||, is a seminorm.

Proof. The case p =1 is already implied by Proposition BT3 while the case
p = oo is implied by Proposition BZ3. We may thus assume p € (1,00). Set
q such that 1/p+1/q = 1. We have,

|+ gl < IFIF + gl +1gllf + 9P~
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Notice that |f + g|[P~! € L7 so that the two summands on the right hand
side are integrable by Theorem B-I0. Integrating on both sides and applying
Holder’s inequality to both summands on the right hand side yields,

1£ + g2 < £ 1F + g7 g + gl lIF + 9P~
Noticing that [||f + g*~ [ly = [If + gl we find,
1+ gl < (11 + gl 1F + gl

Dividing by ||f + gﬂg_l yields the desired inequality. This is nothing but
the triangle inequality for || - ||,. The other properties making this into a
seminorm are immediately verified. O

4.2 Properties of L spaces

Theorem 4.12. Let p € [1,00) and {fn}nen be a Cauchy sequence in LP.
Then, the sequence converges to some f € LP in the || - ||p-seminorm. That
is, LP is complete. Furthermore, there exists a subsequence which converges
pointwise almost everywhere to f and for any € > 0 converges uniformly to
f outside of a set of measure less than e.

Proof. Since {fy}nen is Cauchy, there exists a subsequence {f,, }ren such
that
1 for = frlly <27%% VEeN and VI >k

Define
Yk = {'7: € X: ‘fnk+1(x) - fnk(z)‘ Z Qik} Vk € N.

Then,
2_kp:u(yk) < /Y |fnk+1 - fnk|p < /X ‘fnkJrl - fnk|p < 2—2kp Vk € N.
&

This implies, u(Yy) < 275 < 27F for all k € N. Define now Z; := Uz, Yk
for all j € N. Then, p(Z;) < 217 for all j € N.

Fix € > 0 and choose j € N such that 2!/ <e. Let z € X \ Z;. Then,
for k > j we have

| Frpsr () = fop ()| < 27F.

Thus, the sum Y 72 fn, ., (z) — fn, (x) converges absolutely. In particular,
the limit

f(z) = ll_iglofnl(x) = fo(2) + anlH (z) = fo (@)
=1
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exists. For all k£ > j we have the estimate,

|f($) - fnk(x)’ = anl+1 (:L‘) - fnl(x) S Z ’fnl+1(x) - fnz($)‘ S 21_k
=k

=k

Thus, {fn, }ken converges to f uniformly outside of Z;, where pu(Z;) < e.

Repeating the argument for arbitrarily small e we find that f is defined on
X\Z, where Z := (2, Z;. Furthermore, { fy, }ren converges to f pointwise
on X \ Z. Note that u(Z) = 0. By Theorem P19, f is measurable on X \ Z.
We extend f to a measurable function on all of X by declaring f(z) = 0 if
x € Z.

For fixed k € N consider the sequence {g;}en of integrable functions
given by

g1 = |fuy = fri |-

Since the sequence { f X g1 }ien is bounded, liminf; f g1 exists and we
can apply Proposition BZ8. Thus, there exists an integrable function g and
g(x) = liminf; , ¢;(z) almost everywhere. We conclude that g = |f — f5,, |P
almost everywhere. In particular, since g is integrable, f — f,, € £P and so
also f € LP. Moreover,

/ |f - fnk|p < hmlnf/ |fnl — fnk|p < 2—2kp‘
X =00 Jx

In particular,
1f = Frullp < 272,

So { fn, }ken and therefore also { fy, }nen converges to f in the ||-||,-seminorm.
O

Theorem 4.13. Let {fn}nen be a Cauchy sequence in L. Then, the se-
quence converges uniformly almost everywhere to a function f € L. Fur-
thermore, the sequence converges to f in the L-seminorm. In particular,
L% is complete.

Proof. Define Z, :={z € X : |fo(z)| > ||fulloc} for all n € N and Y}, ,,, :=
{z € X :|fn(x) = fr()] > || fn. — fmlloo}- By Proposition B8 u(Z,,) = 0 for
all n € N and pu(Y;,,,) = 0 for all n,m € N. Define

Z = (U Zn> ul U Yom

neN n,meN
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Then, pu(Z) = 0. So, {fn(2)}nen converges uniformly on X \ Z to some
measurable function f. We extend f to a measurable function on all of X
by defining f(x) =0 if z € Z. Exercise.Complete the proof. O

Theorem 4.14 (Monotone Convergence Theorem in £P). Let p € [1,00).
Let {fn}nen be a pointwise increasing sequence of real valued functions in
LP such that there exists a constant ¢ € R with || fpll, < ¢ for all n € N.
Then, the sequence { fy}nen converges to some function f € LP in the || - ||,-
seminorm and also converges pointwise to f almost everywhere.

Proof. Exercise. O

Theorem 4.15 (Dominated Convergence Theorem in £P). Let p € [1,00).
Let {fn}nen be a sequence of functions in LP such that there exists a real
valued function g € LP with |f,| < g for all n € N. Assume also that
{fn}nen converges pointwise almost everywhere to a measurable function f.
Then, f € LP and {fn}nen converges to f in the || - ||p-seminorm.

Proof. Exercise.Prove this by suitably adapting the proof of Theorem B=4.
Hint: Replace |f, — fm| by |fn — fm|P, and apply Theorem instead of
Proposition BZ3. ]

Proposition 4.16. Let p € [1,00). Then, S C LP is a dense subset.

Proof. If f is an integrable simple function f, then |f|P is also integrable
simple. So, § is a subset of £P. Now consider f € LP. We need to con-
struct a sequence of integrable simple functions that converges to f in the
|| - ||p-seminorm. Exercise.Do this by appropriately modifying the proof of
Proposition B331. [

Proposition 4.17. The simple maps form a dense subset of L.

Proof. Let f € L% and fix € > 0. The statement follows if we can show that
there exists a simple map h such that || f —h|lc < €. By Proposition B8 there
is a bounded map g € £ such that g = f almost everywhere and ||g|sup =
| flloo- Since g is bounded, its image A C K is bounded and thus contained
in a compact set. This means that we can cover A by a finite number
of open balls {Bg}reqi,...ny of radius e. Denote the centers of the balls by
i FJ while still covering A, i.e., A C Uke{l,...,n} Cx. (Exercise.Explain how
this can be done.) Define Dy, := ¢~ (Ck). {Di}reqr,.. xy form a measurable
partition of X. Now set h(z) := x if © € Dj. Then, h is simple and
1 = Blloo = llg — Blloo < llg — Allaup < €. O
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Exercise 31. The Monotone Convergence Theorem (Theorem B28) and the
Dominated Convergence Theorem (Theorem or BTH) are not true in £°.
Give a counterexample to both. More precisely, give a pointwise increasing
sequence {fp}nen of real non-negative valued functions f,, € £ on some
measure space X such that {f,}nen converges pointwise to some f € £,
but {f,}nen does not converge to any function in the || - ||oo-seminorm.

We have seen already that the spaces LP with p € [1, 00| are vector spaces
with a seminorm || - ||, and are complete with respect to this seminorm. In
order to convert a vector space with a seminorm into a vector space with a
norm, we may quotient by those elements whose seminorm is zero.

Definition 4.18. Let p € [1,00]. Then the quotient space £P/ ~ in the
sense of Proposition is denoted by LP. It is a Banach space.

Banach spaces have many useful properties that make it easy to work
with them. So usually, one works with the spaces LP instead of the spaces
LP. Nevertheless one can still think of the these as "spaces of functions"
even though they are spaces of equivalence classes. But (because of Propo-
sition E9) two functions are in one equivalence class only if they are "essen-
tially the same", i.e., equal almost everywhere.

Proposition 4.19. Let p,q € (0,00] and set r € (0,00] such that 1/r =
1/p+1/q. Then, given f € LP and g € LT we have fg € L. Moreover, the
following inequality holds,

1£gll- < 1 £1lpllglq-

Proof. Exercise.[Hint: For f € LP and g € L9 apply Holder’s Theorem
(Theorem BAIM) to |f|" and |g|", in the case r < co. Treat the case r = 0o
separately.| O

Proposition 4.20. Let0 < p < g <r < oo. Then, LPNL" C L9. Moreover,
if r < oo,
AT < LI (I Ve PnLr

If r = 0o we have,
IA1G < WAIGIFIIEP Ve £PnLe.
Ifp>1, then also LP NL" C LY.

Proof. Exercise. O
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Proposition 4.21. Let X be a measure space with finite measure . Let
0<p<qg<oo. Then, L1 X, u) C LP(X,n). Moreover,

1£llp < N1 fllg (wGO)YP=H9 vf € L9X, ).
If p> 1, then also LY(X, u) C LP(X, p).
Proof. Exercise. O

Lemma 4.22. Let X be a measure space with o-finite measure u and let
p € (0,00). Then, there exists a function w € LP(X, u) such that 0 < w < 1.

Proof. Let {X,,}nen be a sequence of disjoint sets of finite measure such that

X = Upen Xn. Define

9—n 1/p .

This has the desired properties. Exercise.Show this. ]

Exercise 32 (adapted from Lang). Let X be a measure space with o-finite
measure p and let p € [1,00). Let T : LP — LP be a bounded linear
map. For each g € L consider the bounded linear map M, : LP — LP
given by f — gf. Assume that T and M, commute for all g € £, ie.,
T oMy = MgoT. Show that T" = M for some h € £%. [Hint: Use
Lemma X2 to obtain a function w € LP N L with 0 < w. Then, for
f € LPNL* we have

T(wf) =wT(f) = [T (w).

If we define h := T'(w)/w we thus have T(f) = hf. Prove that h is es-
sentially bounded by contradiction: Assume it is not and consider sets of
positive measure where |h| > ¢ for some constant ¢ and evaluate 7" on the
characteristic function of such sets. Finally, prove that T'(f) = hf for all

fecLr]



Robert Oeckl - RA NOTES — 15/11,/2012 51

4.3 Hilbert spaces and L?

Definition 4.23. Let V' be a complex vector space and (-,-) : V xV — C a
map. (-,-) is called a sesquilinear form iff it satisfies the following properties:

o (u+v,w) = (u,w)+ (v,w) and
(u, v+ w) = (u,v) + (u, w) for all u,v,w € V.
(

o (\u,v) = Mu,v) and (u, \v) = Au,v) for all A\ € C and v € V.
(-,-) is called hermitian iff it satisfies in addition the following property:
o (u,v) = (v,u) for all u,v € V.
(+,+) is called positive iff it satisfies in addition the following property:
e (v,v) >0forallveV.
(+,+) is called definite iff it satisfies in addition the following property:
o If (v,v) =0thenv=0forallveV.

Proposition 4.24 (from Lang). Let V' be a complex vector space with a
positive hermitian sesquilinear form (-,-) : V. xV — C. Ifv € V is such that
(v,v) =0, then (v,w) = (w,v) =0 for allw € V.

Proof. Suppose (v,v) = 0 for a fixed v € V. Fix some w € V. For any t € R
we have,
0 < (tv +w,tv+w) = 2t R((v,w)) + (w, w).

If R({(v,w)) # 0 we could find ¢ € R such that the right hand side would
be negative, a contradiction. Hence, we can conclude R({v,w)) = 0, for all
w € V. Thus, also 0 = R((v,iw)) = R(—i(v,w)) = F((v,w)) for all w € V.
Hence, (v,w) =0 and (w,v) = (v,w) =0 for all w € V. O

Theorem 4.25 (Schwarz Inequality). Let V' be a complex vector space with
a positive hermitian sesquilinear form (-,-) : V-xV — C. Then, the following
inequality is satisfied:

(v, w)|* < (v, v){(w,w) Yv,w e V.

Proof. If (v,v) = 0 then also (v, w) = 0 by Proposition and the inequal-
ity holds. Thus, we may assume « := (v,v) # 0 and we set 8 := —(w,v).
By positivity we have,

0 < {Bv + aw, Bv + aw).



52 Robert Oeckl - RA NOTES — 15/11,/2012

Using sesquilinearity and hermiticity on the right hand side this yields,
0< ‘(Uv 'U) ’2<w7 w> - ('U, ’U>’<’U, w>‘2

(Exercise.Show this.) Since (v,v) # 0 we can divide by it and arrive at the
required inequality. O

Proposition 4.26. Let V' be a complex vector space with a positive hermitian
sesquilinear form (-,-) : V. x V. — C. Then, V carries a seminorm given by

lv]| := /(v,v). If {-,-) is also definite then || -|| is a norm.

Proof. Exercise.Hint: To prove the triangle inequality, show that ||v+w|? <
(Jlv]|+]|w]||)? can be derived from the Schwarz inequality (Theorem EZ5). [

Definition 4.27. A positive definite hermitian sesquilinear form is also
called an inner product or a scalar product. A complex vector space equipped
with such a form is called an inner product space or a pre-Hilbert space. It
is called a Hilbert space iff it is complete with respect to the induced norm.

Proposition 4.28. Consider the map (-,-) : £L2 x £L? — C given by

(f,9) = /fg-

Then, {-,-) is a positive hermitian sesquilinear form on L>. Moreover, the
seminorm induced by it according to Proposition 29 is the || - ||2-seminorm.
Also, the map {-,-) : L2xL2 — C given by ([f],[g]) := (f,g) defines a positive
definite hermitian sesquilinear form on L2. The norm induced by it is the
| - l2-norm. This makes L? into a Hilbert space.

Proof. Exercise. O

The following Theorem about Hilbert spaces is fundamental, but we do
not include the proof here, as we will only use it one single time.

Theorem 4.29. Let H be a complex Hilbert space and o : H — C a bounded
linear map. Then, there exists a unique element w € H such that

a(v) = (v,w) Vv e H.
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5 Measures and integrals on product spaces

5.1 The Product of measures

Definition 5.1. Let S, T be sets and M C B(S), N C P(T') be algebras
of subsets. For (A, B) € M x N we view A x B as a subset of S x T, called
a rectangle. We denote the set of rectangles by M x N C PB(S x T). Then,
MUON CB(S x T) denotes the algebra generated by the set of rectangles.
We also call this the product algebra. Similarly, MXN denotes the o-algebra
generated by MUON which we call the product o-algebra.

Proposition 5.2. MON consists of the finite disjoint union of elements of
M x N.

Proof. Exercise. O

Proposition 5.3. Let M’', N’ be the o-algebras generated by M and N
respectively. Then,

NEM=NKM.
Proof. Exercise. O

Lemma 5.4. Let (S, M), (T,N) be measurable spaces. Let U € M XN
andpe S. SetUy,:={qeT:(p,q) €U} CT. Then, U, € N.

Proof. Let A denote the set of subsets V' C S x T such that V€ MXN
and V, € N. Let (A, B) € M x N. Then the rectangle A x B is in A since
(AxB), = Bifp € Aand (AxB), = () otherwise. Thus, all rectangles are in
A. Moreover, A is an algebra: Clearly () € A. Also, if V € A, then -V € A
since (=V'), = —(V},). Similarly, for A, B € A we have (AN B), = A, N B,.
So, MON C A. But A is even a o-algebra: Let (A,)nen be a sequence of
elements of A. Then, (U,en 4n)p = Unen(4n)p. Thus, M KN C A. But
A C M XN by construction. m

Lemma 5.5. Let (S, M), (T,N), (U, A) be measurable spaces and f : S x
T — U a measurable map, where S xT is equipped with the product o-algebra
MXN. Forpe S denote by f, : T — U the map fp(q) :== f(p,q). Then,
fp is measurable for all p € S.

Proof. Let V. € A. Then, f;(V) = (f~*(V))p, using the notation of

Lemma E4. But by that same Lemma, (f~1(V)), € V. O
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Theorem 5.6. Let (S, M, u) and (T,N,v) be measure spaces with o-finite
measures. Then, there exists a unique measure pXv on the measurable space
(S x T, MR N) such that for sets of finite measure A € M and B € N we

have

(1B V)(A x B) = p(A)w(B).

Proof. At first we assume the measures to be finite. It is clear from Proposi-
tion B2 that uXv, if it exists, is uniquely determined on MON by additivity.
A priori it is not clear, however, if 4 X v can be well defined even merely on
MUON, since a given element of MON can be presented as a disjoint union
of rectangles in different ways. For U € MUON define ay : S — RE{ by
ay(p) :==v(Up). If U = A x B is a rectangle, we have ay(p) = xa(p)v(B)
for p € S. In particular, o is integrable on S and we have

w(Ayv(B) = / ay dp.
S
For U a finite disjoint union of rectangles the function «p is simply the
sum of the corresponding functions for the individual rectangles and is thus
integrable on S. In particular, we must have

(B)O) = [ avdp,
incidentally showing that pu X v is well defined on MUON.

We proceed to show that pu X v is countably additive on MUON. Let
{Un}nen be an increasing sequence of subsets of MUOAN such that U :=
Upen Un € MON. Then, {ay, }nen is an increasing sequence of integrable
functions on S such that

/aUndug/osz,u:(,ugl/)(U) Vn € N.
S S

Hence we can apply the Monotone Convergence Theorem B29. Since ag,
converges pointwise to ay we must have

lim oy, dp = / ay du.
That is, limy, e (X v)(U,) = (p®v)(U), implying countable additivity. It
is now guaranteed by Hahn’s Theorem =33 and Proposition that pX v
extends to a measure on M XN, and uniquely so.

It remains to consider the case of o-finite measures. Exercise. O
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Exercise 33. Show whether the operation of taking the product measure is
associative.

Exercise 34. Show that the Lebesgue measure on R”"™ is the completion
of the product measure of the Lesbegue measures on R™ and R™.

In the following we denote the completion of a o-algebra A with respect
to a given measure by A*.

Lemma 5.7. Let (S,M,pn) and (T,N,v) be measure spaces with o-finite
complete measures. Let Z € (MR N)* of measure 0. Then, for almost all
p € S we have v(Z,) = 0.

Proof. We consider first the case that the measures are finite. For all n € N
define v, == {p € S : v(Z,) > 1/n}. Now fix n € N and j € N. Since
the algebra NN generates the o-algebra N/ X M, Theorem P33, implies
that there is a sequence of disjoint rectangles {A; x Bji}ren such that
Z C Rj and (n®v)(Rj) < 1/(nj), where R; := (Jp—1(Ajk X Bj). Define
now X; :={p € S: v((Rj)p) > 1/n}. Obviously, Y,, C X;. Moreover, X is
measurable since p — v((Rj)p) = Y. XA, (p)v(Bj k) is measurable, being
a pointwise limit of measurable functions (Theorem ZT9). We have then,

RV Ry =S u(Ajv(Big) =3 / X, (P)(Bjx) du(p)
k=1 k=1""5

o
= [ Y a0 ante) = [ v((),) duto)
S S

1 1

> [ v((Rj)p)dp(p) = | —dp=—p(X;)

X; x; n n
(Exercise.Justify the interchange of sum and integrall) Thus we get the
estimate p(X;) < 1/j. Repeating the construction for all j € N set X :=
ﬂ;’il X;. We then have Y,, C X, but p(X) = 0. Thus, since p is complete,
Y,, is measurable and has measure 0. This in turn implies that Y := {p €
S :v(Zy) > 0} = Jo2, Y, has measure 0 as required. Exercise.Complete
the proof for the o-finite case! O

5.2 Fubini’s Theorem

Lemma 5.8. Let (S, M, pn) and (T,N,v) be measure spaces with o-finite
measures. Let AxB C SxT be a rectangle such that 0 < (uX¥v)(AxB) < 0.
Then, 0 < u(A) < 0o and 0 < v(B) < oo.
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Proof. Exercise. O

Lemma 5.9. Let (S, M, pn) and (T,N,v) be measure spaces with o-finite
complete measures. Let {(A1,A1,B1),...,(An, Apn, Bn)} be triples of ele-
ments of K,N, M respectively and such that 0 < p(A4;) < oo and 0 <
v(B;) < 00. Define g: S xT — K by

g(p7 Q> = Z AkXAk (p)XBk (q>
k=1

Then, g € S(S x T, uXv). Moreover, g, € S(T,v) for allp € S and

pr—>/gpd1/
T

defines a function in S(S, p) satisfying

/S (/TgpdV) du(p) = /SXng(u&u).

Proof. Exercise. O

Theorem 5.10 (Fubini’s Theorem, Part 1). Let (S, M, u) and (T,N,v) be
measure spaces with o-finite complete measures and f € LY(S x T, (M X
N, uRv). Then, f, € LYT,N,v) for almost all p € S and

pb—>/fpdy
T

defines almost everywhere a function in L'(S, M, 1) satisfying

/S </T I dV) dup) = | fd(uBy).

Proof. By Proposition B=Z3 there is a sequence { f, }nen of integrable simple
functions, measurable with respect to MON/, that converges to f in the
|| - |[1-seminorm. Each function f,, can be written as a linear combination
of characteristic functions on elements of MUON with finite measure. By
modifying f,, if necessary, but without affecting convergence of the sequence
we can also arrange that the supports of the characteristic functions all
have non-zero measure. Due to Theorem B4, by replacing { fy, }neny with a
subsequence if necessary, we can ensure moreover pointwise convergence to
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f, except on a set N of measure zero. Taking into account Lemma BR we
notice that the functions f,, satisfy the conditions of Lemma B9.

By Lemma BT, there exists a subset X C S with measure 0 such that
v(N,) = 0if p ¢ X. Fix for the moment p € S\ X. Then, {(fn)p}nen
converges to f, pointwise outside NN,. Moreover, since the (f,), are mea-
surable with respect to (7, ) by construction, so is f, outside of N, due
to Theorem ZT9. But, N, has measure zero and (T, N, v) is complete by
assumption, so f, is measurable everywhere.

Since { f }nen is Cauchy, we can restrict to a subsequence such that

/i — fulli <27% VkeN,VI> k.

By applying Lemma 59 to |f; — fp|, we have for all K € N and [ > £,

1, = (Gl auto) /(/\fl rdu)dm

-/, (/T Sz fk‘p(”) Auw) = [ 1= A1) = 1= fell < 27

Now for kK € Nset Y, C S to

Yii={p €St (fi)p— (fplluw = 274}

Then, for all k£ € N,

PuYe) < | 1 (Free)p — (Fe)plliwdi(p)

Y

< / 1Fert)y = o lliwdu(p) < 22
S

This implies, p(Y)) < 27% for all k& € N. Define now Z; := Urz; Y for all
j € N. Then, p(Z;) < 2'J for all j € N.
Fix j € Nand let p € S\ Z;. Then, for k > j we have

I(frt)p — (fi)plliy <277
This implies for £ > j and [ > k,

1(f)p — (frdplliw <275

In particular, {(f,)p}nen is a Cauchy sequence with respect to the || - ||1,,-
seminorm. Since j was arbitrary, this remains true for p € S\ Z, where
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Z = (2, Zj. Note that u(Z) = 0. Now let p € S\ (X UZ). Since
{(fn)p}nen converges to f, pointwise almost everywhere, and f, is measur-
able, Proposition BZ3 then implies that f), is integrable and that {(f»)p}nen
converges to f, in the || - ||; ,-seminorm.

Now define

hn:p»—>/T(fn)pd1/

By Lemma B this is an integrable simple map and by the previous argu-
ments it converges pointwise outside of X U Z to

hipH/T(f)pdV-

Thus, h is measurable in S\ (X U Z) by Theorem ZT9 and can be extended
to a measurable function on all of S, for example by setting h(p) = 0 if
p € X UZ. On the other hand, {h,},en is a Cauchy sequence with respect
to the | - [|1,,-seminorm since, for all I,k € N,

= bl = [ 1= el = [ ' [ o= ) v auty)

< [ ([ 1t~ tonlav ) aute) = 11 - 5l

and {fn}nen is Cauchy. Thus, by Proposition BZH, h is integrable and
{hn}nen converges to h in the || - |1 ,-seminorm. Then,

FapEy) = fin [ @y = in [ ( / (fn)pdv> dyu(p)

SxT n—=o0 JoxT

:RIL%Ahndu:[ghdM:A<prdy> dp(p).

O]

Lemma 5.11. Let (S, M, pn) and (T, N,v) be measure spaces with o-finite
complete measures and f : S x T — K measurable with respect to (MK N)*.
Then, for almost all p € S, f, is measurable with respect to N

Proof. By Proposition 230, there is a function g : S x T' — K that is
measurable with respect to M XN and such that g coincides with f at least
outside a set N € M XN of measure 0. By Lemma B3, g, is measurable
for all p € S. By Lemma 570, v(Np) =0 for all p € S\ Y, where Y € NV is
of measure 0. Let p € S\'Y, then g, coincides with f;, almost everywhere
and since (T, N, v) is complete f, must be measurable. O
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Theorem 5.12 (Fubini’s Theorem, Part 2). Let (S, M, pn) and (T,N,v)
be measure spaces with o-finite complete measures and f : S x T — K be
measurable with respect to (M X N)*. Suppose that f, € LY(T,N,v) for
almost all p € S. Moreover suppose that the function

p'—>/ | fpl dv
T

defined almost everywhere in this way is in L'(S, M, ). Then, f € L*(S x
T, N K M)* nXv).

Proof. Denote by X € M a set of measure 0 such that f, € £L1(T,N,v) for
p € S\ X. By Theorem EZZ3 there exists a an increasing sequence { fy, }nen of
simple functions f, : S x T — R with respect to (M XN)* that converges
pointwise to |f|. Moreover, because of o-finiteness the f,, can be chosen to
have finite support. (Exercise.Explain!) In particular, this implies that
each f, is integrable. Applying Theorem BT to f, yields a set N, € M
of measure 0 such that (f,), € L1(T,N,v) for all p € S\ N,. Moreover, it
implies that hy, : S — R{ defined by hn(p) := [.(fn)pdv for p € S\ N, and
hn(p) = 0 otherwise, is integrable. Also it implies,

/hndu: fad(pXv)
S SxT

Let N := [J,ey V- This has measure 0. Note that since f, < f for all
n € N we also have h,(p) < [, |fp|dv for all p € S\ {N U X}. Putting
things together we get for all n € N

Sfondwm)—/ShndusL(/Tfpdv) dp

Thus, by the Monotone Convergence Theorem B8, { f,, },,cn converges point-
wise almost everywhere to an integrable function. But {f,},en converges
pointwise to |f|, which is measurable, so |f| must be integrable. Then, by
Proposition B33, f is integrable. O
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6 Relations between measures

Proposition 6.1. Let X be a measured space with o-algebra M. Let p1, s
be positive measures on M. Then, p := p1 + po is a positive measure on
(X, M). Moreover, L}(p) = L (1) N L (p2) and

/Afduz/Afdu1+/Afduz Ve Ll (n)Ac M.

Proof. Exercise. O

Definition 6.2 (Complex Measure). Let X be a measured space with o-
algebra M. Then, a map u : M — C is called a complex measure iff it
is countably additive, i.e., satisfies the following property: If {A,},en is a
sequence of elements of M such that A, N A, = 0 if n # m, then

m (U An) = nilu(fln)

neN

Remark 6.3. 1. The above definition implies p(f)) = 0. 2. The convergence
of the series in the definition is absolute since its limit must be invariant
under reorderings. 3. In contrast to positive measures, a complex measure is
always finite.

Exercise 35. Show that the complex measures on a given o-algebra form a
complex vector space.

Definition 6.4. Let X be a measured space with o-algebra M. Let u be a
positive measure on (X, M) and v a positive or complex measure on (X, M).
We say that v is absolutely continuous with respect to u, denoted v < p iff
p(A) = 0 implies v(A) = 0 for all A € M.

Definition 6.5. Let X be a measured space with o-algebra M. Let p be a
positive or complex measure on (X, M). We say that u is concentrated on

Ae Miff f(B) = (BN A) for all Be M.

Definition 6.6. Let X be a measured space with g-algebra M. Let u, v be
positive or complex measures on (X, M). We say that p and v are mutually
singular, denoted p L v, iff there exist disjoint sets A, B € M such that u
is concentrated on A and v is concentrated on B.

Proposition 6.7. Let p be a positive measure and v,vi,vs be positive or
complex measures.
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1. If u is concentrated on A and v < pu, then v is concentrated on A.
Ifvi < pwand vy L p, then vy L vy,
Ifv<puandv L p, thenv =0.

If v < pand vy K p, then vy + vy <K p.

SRS

If vy Lvand vy L v, then vy +vy L .
Proof. Exercise. O

Theorem 6.8. Let X be a measure space with o-algebra M and o-finite
measure (. Let v be a finite measure on (X, M).

1. (Lebesgue) Then, there exists a unique decomposition
V=1V, + Vs,

into finite measures such that v, < p and vs L p.

2. (Radon-Nikodym) There exists a unique [h] € LY(u) such that for all
AeM,

Va(A) = /A hdp.

Proof. We first show the uniqueness of the decomposition v = v, + v in
(1.). Suppose there is another decomposition v = v/, + v.. Note that all
the measures involved here are finite and thus are also complex measures.
In particular, we obtain the following equality of complex measures, v, —
vl = v, — vs. However, by Proposition 622 the left hand side is absolutely
continuous with respect to p while the right hand side is singular with respect
to p. Again by Proposition B74, the equality of both sides implies that they
must be zero, i.e., v, = v, and v, = v;.

To show the uniqueness of [h] € L!(u) in (2.) we note that given another
element [1/] € L!(p) with the same property, we would get [,(h—h')dp =0
for all measurable sets A. By Proposition B=20 then 0 = [h—h'] = [h] —[h'] €
L (u).

We proceed to construct the decomposition v = v, + v and the element
[h] € L1(1). By Lemma E=Z32, there is a function w € £1(y) with 0 < w < 1,

This yields the finite measure p,,, given by

i (A) ::/wdu VA e M.
A
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(Recall the last part of Exercise B.) Define the finite measure ¢ = v +
- Note that L£1(p) € £(v) and L1(¢) C L'(iw) and we have (using
Proposition B),

/desoz/xde+/Xfwdu vf e L), (1)

In particular, we may deduce

‘/dey

By Proposition E2211 we have £2(¢) C L!(yp) and even

<N flloa < Wfllex VS € L)

I £lloa < I fllp2 (XN Ve L2(y).

Combining the inequalities we find

[ sav

This means that the linear map o : L?(¢) — K C C given by [f] — [y[f]dv
is bounded. Since L?(¢y) is a Hilbert space, Theorem implies that there
is an element g € £2(y) such that a([f]) = ([f],[g]) for all f € L3(¢). This
implies,

<[ fllp2 (p(X)? Vf € L2(p).

/ fdv = / fgdp Vf e L2(p) )
X X

By inserting characteristic functions for f we obtain
v(A) = / gdy VAe M.
A

On the other hand we have v(A) < ¢(A) for all measurable sets A and hence,

N

Oggo(lA)/Agd(p:gp((fl))gl VAe M:p(A) > 0.

We can now apply the Averaging Theorem (Theorem BZ0) to conclude that
0 < g < 1 almost everywhere. We modify g on a set of measure zero if
necessary so that 0 < g < 1 everywhere. In particular, if f € £2(p) then
(1—g)f € L2(p) and gf € L?(p). Combining (I) and (2) we find

/(1—g)fdv=/ fowdp Vf € £2(p).
X X
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Set Zy :=={zx € X : g(x) < 1} and Z; := {z € X : g(z) = 1} and define the
measures vq(A) := v(ANZ,) and vs := v(AN Zs) for all A € M. Since X is
the disjoint union of Z, and Zs we obviously have v = v, + v5. Taking f to
be the characteristic function of Zg we find that st wdp = 0. Since 0 < w,
we conclude that p(Zs) = 0. In particular, this implies that p is supported
on Z,, while vy is supported on Zg, so vs L pu.

Define now the sequence {f,}nen of functions f,, :== > p_, ¢*~!. Since
g is bounded, f, is bounded. Multiplying with characteristic functions we
find for measurable sets A,

/A(l—gn)dvz/A(l—g)fndV=/Afngwdu-

Note that {1—g¢"},cn increases monotonically and converges pointwise to the
characteristic function of Z,. Thus, by the Monotone Convergence Theorem
(Theorem B728) or by the Dominated Convergence Theorem (Theorem B=29)
the left hand side converges to v(AN Z,) = v4(A).

The sequence {fnpgw}nen is also increasing monotonically with its -
integrals over A bounded by v4(A). So the Monotone Convergence Theorem
(Theorem B28) applies and the pointwise limit is a p-integrable function h.
We get

) = [ ni

showing existence in (2.) and also v, < pu, thus completing the existence
proof for (1.). O

Remark 6.9. The function h appearing in the above Theorem is also called
the Radon-Nikodym derivative, denoted as h = dv,/dpu.
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